Minimal Length Quantum Mechanics of Dirac Particles in Noncommutative Space
A. N. Ikot1** , H. P. Obong1 , H. Hassanabadi2
1 Theoretical Physics Group, Department of Physics, University of Port Harcourt, Choba PMB 5323, Nigeria2 Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
Abstract :We study the two-dimensional harmonic oscillator in commutative and noncommutative space within the framework of minimal length quantum mechanics for spin-1/2 particles. The energy spectra and the eigenfunction are obtained in both cases. Special cases are also deduced.
出版日期: 2015-02-26
[1] Hossenfelder S 2013 Living Rev. Relativ. 16 2 [2] Magglore M 1993 Phys. Lett. B 319 83 [3] Garay L J 1995 Int. J. Mod. Phys. A 10 145 [4] Gross D J and Mende P F 1988 Nucl. Phys. B 303 407 [5] Magglore M 1993 Phys. Lett. B 304 65 [6] Scardigli F 1999 Phys. Lett. B 452 39 [7] Bambi C and Urban F R 2008 Class. Quantum Grav. 25 095006 [8] Amelino-Camelia G 2001 Phys. Lett. B 510 255 [9] Quesne C and Tkacuk V M 2007 SIGMA 3 016 [10] Ran Y, Xue L, Hu S and Su R K 2000 J. Phys. A 33 9265 [11] Nozari K 2006 Gen. Relativ. Gravit. 38 735 [12] Hassanabadi H, Zarrinkamar S and Rajabi A A 2013 Phys. Lett. B 718 1111 [13] Hassanabadi H, Zarrinkamar S and Maghsoodi E 2013 Eur. Phys. J. Plus 128 25 [14] Hassanabadi H, Zarrinkamar S and Maghsoodi E 2014 Few Body Syst. 55 255 [15] Hassanabadi H, Zarrinkamar S and Maghsoodi E 2013 Int. J. Mod. Phys. A 28 1350041 [16] Brau R and Buisseret F 2006 Phys. Rev. D 74 036002 [17] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D 65 125027 [18] Kempf A, Mangona G and Mann R B 1995 Phys. Rev. D 52 1108 [19] Konishi K, Paffuti G and Provero P 1990 Phys. Lett. B 234 0276 [20] Hassanabadi H, Maghsoodi E, Ikot A N and Zarrinkamar S 2013 Adv. High Energy Phys. 2013 923686 [21] Ikot A N, Yazarloo B H, Zarrinkamar S and Hassanabadi H 2014 Eur. Phys. J. Plus 129 79 [22] Yi Y, Kang L, W J Hua and C C Yi 2010 Chin. Phys. C 34 543 [23] Witten E 1996 Nucl. Phys. B 460 335 [24] Magglore M 1994 Phys. Rev. D 49 5182 [25] Cortes J L and Gamboa J 2005 Phys. Rev. D 71 026010 [26] Ali A F, Das S and Vagenas E C 2011 Phys. Rev. D 84 044013 [27] Das S and Vagenas E C 2008 Phys. Rev. Lett. 101 221301 [28] Chargui Y, Chetouani L and Trabelsi A 2010 Commun. Theor. Phys. 53 231 [29] Ikot A N, Hassanabdi H, Maghsoodi E and Zarrinkamar S 2014 Commun. Theor. Phys. 61 436 [30] Hassanabdi H, Derakhshani Z, Sahehi N and Zarrinkamar S 2014 Eur. Phys. J. Plus 129 43 [31] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser) [32] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
[1]
. [J]. 中国物理快报, 2016, 33(11): 110303-110303.
[2]
. [J]. 中国物理快报, 2015, 32(4): 40301-040301.
[3]
. [J]. 中国物理快报, 2013, 30(9): 90401-090401.
[4]
LIN Bing-Sheng**;HENG Tai-Hua
. Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension [J]. 中国物理快报, 2011, 28(7): 70303-070303.
[5]
YU Xiao-Min;LI Kang. Non-Commutative Fock--Darwin System and Magnetic Field Limits [J]. 中国物理快报, 2008, 25(6): 1980-1983.
[6]
WANG Jian-Hua; LI Kang;. He--McKellar--Wilkens Effect in Noncommutative Space [J]. 中国物理快报, 2007, 24(1): 5-7.
[7]
S. A. Alavi. General Noncommuting Curvilinear Coordinates and Fluid Mechanics [J]. 中国物理快报, 2006, 23(10): 2637-2639.
[8]
XIONG Chuan-Hua. Noncommutativity in Haldane’s Model [J]. 中国物理快报, 2003, 20(10): 1689-1690.
[9]
S. A. Alavi. One-Dimensional Potentials in q Space [J]. 中国物理快报, 2003, 20(1): 8-11.