摘要An array of metallic rods can transport details below the diffraction limit of an object from the front face to the back face. This super-resolution imaging system has been studied in the microwave, mid-infrared and optical range. We investigate its performance in the near infrared (1550 nm) region. Numerical simulations show that the near-field components of dipole sources are transferred by the excitation and propagation of the surface plasmon mode of the rods. The appropriate length of rods is determined by the excited surface plasmon mode. The spatial resolution is greatly affected by the loss of metal.
Abstract:An array of metallic rods can transport details below the diffraction limit of an object from the front face to the back face. This super-resolution imaging system has been studied in the microwave, mid-infrared and optical range. We investigate its performance in the near infrared (1550 nm) region. Numerical simulations show that the near-field components of dipole sources are transferred by the excitation and propagation of the surface plasmon mode of the rods. The appropriate length of rods is determined by the excited surface plasmon mode. The spatial resolution is greatly affected by the loss of metal.
YAO Jie,YE Yong-Hong**. Super-Resolution Imaging by using a Metallic Rod Array in the Near Infrared Region[J]. 中国物理快报, 2012, 29(4): 47802-047802.
YAO Jie,YE Yong-Hong**. Super-Resolution Imaging by using a Metallic Rod Array in the Near Infrared Region. Chin. Phys. Lett., 2012, 29(4): 47802-047802.
[1] Pendry J B 2000 Phys. Rev. Lett. 85 3966[2] Zhang S, Fan W J, Panoiu N C, Malloy K J, Osgood R M and Brueck S R 2006 Opt. Express 14 6778[3] Valentine J, Zhang S, Zentgraf T, Ulin Avila E, Genov D A, Bartal G and Zhang X 2008 Nature 455 376[4] Luo C Y, Johnson S G, Joannopoulos J D and Pendry J B 2002 Phys. Rev. B 65 201104[5] Luo C Y, Johnson S G, Joannopoulos J D and Pendry J B 2003 Phys. Rev. B 68 045115[6] Li Z Y and Lin L L 2003 Phys. Rev. B 68 245110[7] Chien H T, Tang H T, Kuo C H, Chen C C and Ye Z 2004 Phys. Rev. B 70 113101[8] Zhang X D 2004 Phys. Rev. B 70 205102[9] Kuo C H and Ye Z 2004 Phys. Rev. E 70 056608[10] Wu X F, Zhang J and Gong Q H 2009 Opt. Express 17 2818[11] Belov P A, Marqués R, Maslovski S I, Nefedov I S, Silveirinha M, Simovski C R and Tretyakov S A 2003 Phys. Rev. B 67 113103[12] Belov P A, Simovski C R and Ikonen P 2005 Phys. Rev. B 71 193105[13] Belov P A, Hao Y and Sudhakaran S 2006 Phys. Rev. B 73 033108[14] Silveirinha M G 2006 Phys. Rev. E 73 046612[15] Belov P A and Silveirinha M G 2006 Phys. Rev. E 73 056607[16] Belov P A, Zhao Y, Sudhakaran S, Alomainy A and Hao Y 2006 Appl. Phys. Lett. 89 262109[17] Silveirinha M G, Belov P A and Simovski C R 2007 Phys. Rev. B 75 035108[18] Ikonen P, Simovski C, Tretyakov S, Belov P A and Hao Y 2007 Appl. Phys. Lett. 91 104102[19] Silveirinha M G, Belov P A and Simovski C R 2008 Opt. Lett. 33 1726[20] Rahman A, Belov P A, Silveirinha M G, Simovski C R, Hao Y and Parini C 2009 Appl. Phys. Lett. 94 031104[21] Zhao Y, Belov P A and Hao Y 2009 J. Opt. A 11 075101[22] Ono A, Kato J and Kawata S 2005 Phys. Rev. Lett. 95 267407[23] Kawata S, Ono A and Verma P 2008 Nature Photon. 2 438[24] Rahman A, Belov P A and Hao Y 2010 Phys. Rev. B 82 113408[25] Zhou Z K, Li M, Yang Z J, Peng X N, Su X R, Zhang Z S, Li J B, Kim N C, Yu X F, Zhou L, Hao Z H and Wang Q Q 2010 ACS Nano 4 5003[26] Shvets G, Trendafilov S, Pendry J B and Srychev A 2007 Phys. Rev. Lett. 99 053903[27] Casse B D F, Lu W T, Huang Y J, Gultepe E, Menon L and Sridhar S 2010 Appl. Phys. Lett. 96 023114[28] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370[29] Takahara J, Yamagishi S, Taki H, Morimoto A and Kobayashi T 1997 Opt. Lett. 22 475[30] Imura K, Nagahara T and Okamoto H 2005 J. Chem. Phys. 122 154701[31] Su K H, Wei Q H, Zhang X, Mock J J, Smith D R and Schultz S 2003 Nano. Lett. 3 1087