Waveguide Mode Splitter Based on Multi-mode Dielectric-Loaded Surface Plasmon Polariton Waveguide
CAI Yong-Jing1,2 , LI Ming1,2 , XIONG Xiao1,2 , YU Le1,2 , REN Xi-Feng1,2** , GUO Guo-Ping1,2 , GUO Guang-Can1,2
1 Key Lab of Quantum Information, University of Science and Technology of China, Hefei 2300262 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Abstract :In photonic integrated circuits, information is usually encoded in the optical path. In this work, based on the multi-mode dielectric-loaded surface plasmon polariton waveguide, we numerically design a directional coupler, which can divide the different waveguide eigenmodes into different optical paths. The results show a possibility to encode information onto different waveguide modes. We also experimentally demonstrate that the splitting ratio of this directional coupler structure can be tuned without changing its size.
收稿日期: 2015-04-15
出版日期: 2015-10-30
:
73.20.Mf
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
71.36.+c
(Polaritons (including photon-phonon and photon-magnon interactions))
78.20.Bh
(Theory, models, and numerical simulation)
42.79.Gn
(Optical waveguides and couplers)
引用本文:
. [J]. 中国物理快报, 2015, 32(10): 107305-107305.
CAI Yong-Jing, LI Ming, XIONG Xiao, YU Le, REN Xi-Feng, GUO Guo-Ping, GUO Guang-Can. Waveguide Mode Splitter Based on Multi-mode Dielectric-Loaded Surface Plasmon Polariton Waveguide. Chin. Phys. Lett., 2015, 32(10): 107305-107305.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/32/10/107305
或
https://cpl.iphy.ac.cn/CN/Y2015/V32/I10/107305
[1] Joannopoulos J D, Villeneuve Pierre R and Fan Shanhui 1997 Nature 386 143 [2] Coldren L A et al 2012 Diode Lasers and Photonic Integrated Circuits 2nd edn (New York: Wiley) [3] Oulton R F et al 2009 Nature 461 629 [4] Davis K M, Miura K, Sugimoto N and Hirao K 1996 Opt. Lett. 21 1729 [5] Politi A, Matthews J C F, Thompson M G and O'Brien J L 2009 IEEE J. Sel. Top. Quantum Electron. 15 1673 [6] Xu Q F, Schmidt B, Pradhan S and Lipson M 2005 Nature 435 325 [7] Marcatili E A J 1969 Bell Syst. Tech. J. 48 2071 [8] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46 [9] Politi A, Cryan M J, Rarity J G, Yu S and O'Brien J L 2008 Science 320 646 [10] Politi A, Matthews J C F and O'Brien J L 2009 Science 325 1221 [11] Matthews J C F, Politi A, Stefanov A and O'Brien J L 2009 Nat. Photon. 3 346 [12] Peruzzo A, Lobino M, Matthews J C F et al 2010 Science 329 1500 [13] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824 [14] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83 [15] Reinhardt C et al 2006 Opt. Lett. 31 1307 [16] Holmgaard T and Bozhevolnyi S I 2007 Phys. Rev. B 75 245405 [17] Kumar A et al 2013 Laser Photon. Rev. 7 938 [18] Cai Y J et al 2014 Phys. Rev. Appl. 2 014004 [19] Zou C L et al 2011 Opt. Lett. 36 3630 [20] Dong C H et al 2012 Appl. Phys. Lett. 100 041104 [21] Palik E D 1984 Handbook of Optical Constants of Solids (New York: Academic) [22] Krasavin A V and Zayats A V 2007 Appl. Phys. Lett. 90 211101 [23] Hassan K et al 2013 Phys. Rev. B 87 195428 [24] Holmgaard T et al 2009 J. Lightwave Technol. 27 5521 [25] Zou C L et al 2012 IEEE Photon. Technol. Lett. 24 434 [26] Dong C H et al 2009 Appl. Phys. Lett. 95 221109 [27] Guo X et al 2009 Nano Lett. 9 4515
[1]
. [J]. 中国物理快报, 2023, 40(3): 37502-.
[2]
. [J]. 中国物理快报, 2023, 40(1): 17801-.
[3]
. [J]. 中国物理快报, 2022, 39(9): 97301-.
[4]
. [J]. 中国物理快报, 2022, 39(5): 58501-.
[5]
. [J]. 中国物理快报, 2021, 38(8): 87701-.
[6]
. [J]. 中国物理快报, 2021, 38(2): 23301-.
[7]
. [J]. 中国物理快报, 2020, 37(11): 114201-.
[8]
. [J]. 中国物理快报, 2019, 36(10): 107301-.
[9]
. [J]. 中国物理快报, 2019, 36(6): 64202-.
[10]
. [J]. 中国物理快报, 2017, 34(9): 96801-.
[11]
. [J]. 中国物理快报, 2017, 34(8): 89901-.
[12]
. [J]. 中国物理快报, 2017, 34(5): 57501-.
[13]
. [J]. 中国物理快报, 2016, 33(12): 123601-123601.
[14]
. [J]. 中国物理快报, 2016, 33(08): 87303-087303.
[15]
. [J]. 中国物理快报, 2016, 33(02): 26802-026802.