LIU Shao-Qing1, HAN Qin1**, ZHU Bin1, YANG Xiao-Hong1, NI Hai-Qiao2, HE Ji-Fang2, WANG Win1, NIU Zhi-Chuan2
1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 2State Key Laboratory for Superlattices and microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083
LIU Shao-Qing1, HAN Qin1**, ZHU Bin1, YANG Xiao-Hong1, NI Hai-Qiao2, HE Ji-Fang2, WANG Win1, NIU Zhi-Chuan2
1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 2State Key Laboratory for Superlattices and microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083
摘要Tunable metamorphic InGaAs partially depleted absorber photodiodes with resonant cavity enhanced structure are fabricated on GaAs substrate. Dark-current densities of 7.2×10−7 A/cm2 at 0 V and 3.6×10−4 A/cm2 at −5 V, a high quantum efficiency of 74.4% at 1546 nm, and a 3-dB bandwidth up to 12 GHz are achieved. The full width at half maximum of the detector is about 16 nm. Furthermore, through thermal tuning, the peak wavelength red shifts from 1527 nm to 1544 nm, and a tuning range of 17 nm is realized without fabricating extra tuning electrodes.
Abstract:Tunable metamorphic InGaAs partially depleted absorber photodiodes with resonant cavity enhanced structure are fabricated on GaAs substrate. Dark-current densities of 7.2×10−7 A/cm2 at 0 V and 3.6×10−4 A/cm2 at −5 V, a high quantum efficiency of 74.4% at 1546 nm, and a 3-dB bandwidth up to 12 GHz are achieved. The full width at half maximum of the detector is about 16 nm. Furthermore, through thermal tuning, the peak wavelength red shifts from 1527 nm to 1544 nm, and a tuning range of 17 nm is realized without fabricating extra tuning electrodes.
(Molecular, atomic, ion, and chemical beam epitaxy)
引用本文:
LIU Shao-Qing1, HAN Qin1**, ZHU Bin1, YANG Xiao-Hong1, NI Hai-Qiao2, HE Ji-Fang2, WANG Win1, NIU Zhi-Chuan2. Tunable Metamorphic Resonant Cavity Enhanced InGaAs Photodetectors Grown on GaAs Substrates[J]. 中国物理快报, 2012, 29(3): 38501-038501.
LIU Shao-Qing, HAN Qin, ZHU Bin, YANG Xiao-Hong, NI Hai-Qiao, HE Ji-Fang, WANG Win, NIU Zhi-Chuan. Tunable Metamorphic Resonant Cavity Enhanced InGaAs Photodetectors Grown on GaAs Substrates. Chin. Phys. Lett., 2012, 29(3): 38501-038501.
[1] Sankaralingam R and Fay P 2005 IEEE Photon. Technol. Lett. 17 1513
[2] Kimukin I, Biyikli N, Butun B, Aytur O, Ünlü S M and Ozbay E l 2002 IEEE Photon. Technol. Lett. 14 366
[3] Beling A and Campbell J C 2009 J. Lightwave. Technol. 27 343
[4] Wang Y S, Chang S J, Tsai C L, Wu M C, Chiou Y Z, Chang S P and Lin W 2010 IEEE Sensors J. 10 1559
[5] Ünlü M S and Strite S 1995 Appl. Phys. Rev. 78 607
[6] Chowdhury G K, Ramam A and Chua S J 2005 J. Institution of Engineers, Singapore 45 5
[7] Zynek J, Jasik A, Strupiński W, Rutkowski J, Jagoda A, Przyborowska K, JakieŁ a R, Piersa M and Wnuk A 2004 Opt. Electron. Rev. 12 149
[8] El Batawy Y M and Deen M J 2005 IEEE Trans. Electron Devices 52 325
[9] Abaeiani G, Ahmadi V and Saghafi K 2006 IEEE Photon. Technol. Lett. 18 1597
[10] Mao R W, Zuo Y H, Li C B, Cheng B W, Teng X G, Luo L P, Yu J Z and Wang Q M 2005 Appl. Phys. Lett. 86 033502
[11] Lv J H, Huang H, Ren X M, Miao A, Li Y Q, Song H L, Wang Q, Huang Y Q and Cai S W 2008 J. Lightwave. Technol. 26 338
[12] Jang J H, Cueva G, Hoke W E, Lemonias P J, Fay P and Adesida I 2002 J. Lightwave. Technol. 20 507
[13] Lin G R, Kuo H C, Lin C K 2005 IEEE J. Quantum Electron. 41 749
[14] Tångring I, Wang S M, Sadeghi M, Larsson A and Wang X D 2007 J. Cryst. Growth 301-302 971
[15] Huang Y Q, Ren X M, Huang H, Wang Q and Wang X Y 2005 Proc. SPIE 5624 678