摘要A delta-function method is proposed to quantitatively evaluate the electromagnetic impedance matching degree. Measured electromagnetic parameters of α−Fe/Fe3B/Y2O3 nanocomposites are applied to calculate the matching degree by the method. Compared with reflection loss and quarter-wave principle theory, the method accurately reveals the intrinsic mechanism of microwave transmission and reflection properties. A possible honeycomb structure with promising high-performance microwave absorption, devised according to the method, is also proposed.
Abstract:A delta-function method is proposed to quantitatively evaluate the electromagnetic impedance matching degree. Measured electromagnetic parameters of α−Fe/Fe3B/Y2O3 nanocomposites are applied to calculate the matching degree by the method. Compared with reflection loss and quarter-wave principle theory, the method accurately reveals the intrinsic mechanism of microwave transmission and reflection properties. A possible honeycomb structure with promising high-performance microwave absorption, devised according to the method, is also proposed.
MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo**. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. 中国物理快报, 2012, 29(3): 38401-038401.
MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers. Chin. Phys. Lett., 2012, 29(3): 38401-038401.
[1] Yusoff A N, Abdullah M H, Ahmad S H, Jusoh S F, Mansor A A and Hamid S A A 2002 J. Appl. Phys. 92 876
[2] Li Z W, Lin G Q and Kong L B 2008 IEEE Trans. Magn. 44 2255
[3] Sakai K, Asano N, Wada Y and Yoshikado S 2010 J. Eur. Ceram. Soc. 30 347
[4] Nie Y, He H H, Gong R Z and Zhang X C 2007 J. Magn. Magn. Mater. 310 13
[5] Yi H B, Wen F S, Qiao L and Li F S 2009 J. Appl. Phys. 106 103922
[6] Liu X G, Li B, Geng D Y, Cui W B, Yang F, Xie Z G et al 2009 Carbon 47 470
[7] Cao M S, Song W L, Hou Z L, Wen B and Yuan J 2010 Carbon 48 788
[8] Dong X L, Zhang X F, Huang H and Zuo F 2008 Appl. Phys. Lett. 92 013127
[9] Li B W, Shen Y, Yue Z X and Nan C W 2007 J. Magn. Magn. Mater. 313 322
[10] Wu M Z, He H H, Zhao Z S and Yao X 2000 J. Phys. D: Appl. Phys. 33 2398
[11] Yan S J, Zhen L, Xu C Y, Jiang J T and Shao W Z 2010 J. Phys. D: Appl. Phys. 43 245003
[12] Yan L G, Wang J B, Han X H, Ren Y, Liu Q F and Li F S 2010 Nanotechnology 21 095708
[13] Xi L, Wang Z, Zuo Y L and Shi X N 2011 Nanotechnology 22 045707
[14] Liu X G, Geng D Y, Meng H, Shang P J and Zhang Z D 2008 Appl. Phys. Lett. 92 173117
[15] Kang Y Q, Cao M S, Yuan J and Shi X L 2009 Mater. Lett. 63 1344
[16] Yan S J, Zhen L, Xu C Y, Jiang J T, Shao W Z and Tang J K 2011 J. Magn. Magn. Mater. 323 515
[17] Han R, Han X H, Qiao L, Wang T and Li F S 2011 Physica B 406 1932
[18] Huang Y Q, Yuan J, Song W L, Wen B, Fang X Y and Cao M S 2010 Chin. Phys. Lett. 27 027702
[19] Nicolson A M and Ross G F 1970 IEEE Trans. Instrum. Meas. 19 377
[20] Kim S S, Jo S B, Choi K K, Kim J M and Churn K S 1991 IEEE Trans. Magn. MAG-27 5462
[21] Shin J Y and Oh J H 1993 IEEE Trans. Magn. 29 3437
[22] Kwon H J, Shin J Y and Oh J H 1994 J. Appl. Phys. 75 6109
[23] Liu J R, Itoh M and Machida K 2003 Appl. Phys. Lett. 83 4017