Production and Mechanical Behaviour of Biomedical CoCrMo Alloy
O. Sahin1**, A. Rıza Tuncdemir2, H. Ali Cetinkara1, H. Salih Guder1, E. Sahin1
1Department of Physics, Art and Science Faculty, Micro/Nanomechanic Characterization Laboratory, Mustafa Kemal University, Hatay, Turkey 2Department of Prosthetic Dentistry, Dentistry Faculty, Mustafa Kemal University, Hatay, Turkey
Production and Mechanical Behaviour of Biomedical CoCrMo Alloy
O. Sahin1**, A. Rıza Tuncdemir2, H. Ali Cetinkara1, H. Salih Guder1, E. Sahin1
1Department of Physics, Art and Science Faculty, Micro/Nanomechanic Characterization Laboratory, Mustafa Kemal University, Hatay, Turkey 2Department of Prosthetic Dentistry, Dentistry Faculty, Mustafa Kemal University, Hatay, Turkey
摘要Cobalt-based alloy (Co-30Cr-5.5Mo) is produced by the investment casting process. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants because of its high strength, good corrosion resistance and excellent biocompatibility properties. SEM, XRD and microhardness tests are used to examine the mechanical properties of the material. The examined material exhibits the behaviour of indentation size effect (ISE). Our results reveal that Vickers and Knoop microhardness are dependent on indentation test load. The traditional Meyer's law, the proportional specimen resistance (PSR) model and the Hays-Kendall model (HK) are used to analyze the load dependence of the hardness. As a result, the Hays-Kendall model is found to be the most effective to determine the load-independent hardness HLI of CoCrMo alloy.
Abstract:Cobalt-based alloy (Co-30Cr-5.5Mo) is produced by the investment casting process. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants because of its high strength, good corrosion resistance and excellent biocompatibility properties. SEM, XRD and microhardness tests are used to examine the mechanical properties of the material. The examined material exhibits the behaviour of indentation size effect (ISE). Our results reveal that Vickers and Knoop microhardness are dependent on indentation test load. The traditional Meyer's law, the proportional specimen resistance (PSR) model and the Hays-Kendall model (HK) are used to analyze the load dependence of the hardness. As a result, the Hays-Kendall model is found to be the most effective to determine the load-independent hardness HLI of CoCrMo alloy.
O. Sahin**;A. Rza Tuncdemir;H. Ali Cetinkara;H. Salih Guder;E. Sahin
. Production and Mechanical Behaviour of Biomedical CoCrMo Alloy[J]. 中国物理快报, 2011, 28(12): 126201-126201.
O. Sahin**, A. R, za Tuncdemir, H. Ali Cetinkara, H. Salih Guder, E. Sahin
. Production and Mechanical Behaviour of Biomedical CoCrMo Alloy. Chin. Phys. Lett., 2011, 28(12): 126201-126201.
[1] Sahin O et al 2005 Chin. Phys. Lett. 22 3137
[2] Gong J et al 2001 Mater. Sci. Eng. A 303 179
[3] Sahin O et al 2007 Mater. Charac. 58 197
[4] Sangwal K et al 2003 Mater. Chem. Phys. 80 428
[5] Lorenzo V et al 1999 Trends Polym. Sci. 4 65
[6] Balta-Calleja F J J et al 1995 J. Mater. Sci. 30 1139
[7] Sargent P M 1986 Microindentation Techniques in Materials Science and Engineering ed Blau P J and Lawn B R (Philadelphia PA: American Society for Metals) p 160
[8] Mott B W 1956 Microindentation Hardness Testing (London: Butterworths Scientific) p 101
[9] Marshall D B and Lawn B R Sargent P M 1986 Microindentation Techniques in Materials Science and Engineering ed Blau P J and Lawn B R (Philadelphia PA: American Society for Metals) p 26
[10] Hays C and Kendall E G 1973 Metallography 6 275
[11] Luyckx S et al 1999 Mater. Sci. Lett. 18 705
[12] Ma Q and Clarke D R 1995 J. Mater. Res. 4 853
[13] Tomcik B et al 2000 Thin Solid Films 360 173
[14] Zong Z and Soboyejo W 2005 Mater. Sci. Eng. A 404 281
[15] Ren X J et al 2002 Philos. Mag. A 82 2113
[16] Wolf B and Richter A 2003 New J. Phys. 5 15
[17] Park J B 2000 The Biomedical Engineering Handbook: Section IV–Biomaterials ed Bronzino J D 2nd edn (LLC, Florida: CRC Press)
[18] Li H and Bradt R C 1993 J. Mater. Sci. 28 917
[19] Gong J and Li Y 2000 J. Mater. Sci. 35 209
[20] Shaw C et al 1996 Mater. Lett. 28 33
[21] Atkinson M and Shi H 1989 Mater. Sci. Technol. 5 613
[22] Atkinson M 1995 J. Mater. Res. 10 2908
[23] Shi H and Atkinson M 1990 J. Mater. Sci. 25 2111
[24] Lawn B R and Howes V R 1981 J. Mater. Sci. 16 2745
[25] Marshall D B et al 1982 J. Am. Ceram. Soc. 65 175
[26] Chicot D et al 2007 J. Eur. Ceram. Soc. 27 1905
[27] Gong J 2000 J Mater. Sci. Lett. 19 515
[28] Sangwal K et al 2002 Mater. Chem. Phys. 77 511
[29] Cahoon J R et al 1971 Metall. Trans. 2 1979