Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs
Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai**
Department of Physics, NanChang University, Nanchang 330031
Abstract :By means of density functional theory calculations, an orthogonal boron-carbon-nitrogen compound called (3,0)-BC$_2$N is predicted, which can be obtained by transversely compressing (3,0) carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). Its structural stability, elastic properties, mechanical properties and electronic structure are systematically investigated. The results show that (3,0)-BC$_2$N is a superhard material with a direct bandgap. However, its similar structures, (3,0)-C and (3,0)-BN are indirect semiconductors. Strikingly, (3,0)-C is harder than diamond. We also simulate the x-ray diffraction of (3,0)-BC$_2$N to support future experimental investigations. In addition, our study shows that the transition from (3,0) CNTS and BNNTs to (3,0)-BC$_2$N is irreversible.
收稿日期: 2016-06-08
出版日期: 2016-10-27
:
61.50.Ah
(Theory of crystal structure, crystal symmetry; calculations and modeling)
81.05.Zx
(New materials: theory, design, and fabrication)
62.20.-x
(Mechanical properties of solids)
71.15.Mb
(Density functional theory, local density approximation, gradient and other corrections)
引用本文:
. [J]. 中国物理快报, 2016, 33(10): 106102-106102.
Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai. Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs. Chin. Phys. Lett., 2016, 33(10): 106102-106102.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/33/10/106102
或
https://cpl.iphy.ac.cn/CN/Y2016/V33/I10/106102
[1] Friedmann T A, Sullivan J P, Knapp J A, Tallant D R, Follstaedt D M, Medlin D L and Mirkarimi P B 1997 Appl. Phys. Lett. 71 3820 [2] Voevodin A A, Walck S D and Zabinski J S 1997 Wear 203 516 [3] Knittle E, Kaner R B, Jeanloz R and Cohen M L 1995 Phys. Rev. B 51 12149 [4] Yamauchi J, Tsukada M, Watanabe S and Sugino O 1996 Phys. Rev. B 54 5586 [5] McKenzie D R, McFall W D, Sainty W G, Davis C A and Collins R E 1993 Diamond Relat. Mater. 2 970 [6] Solozhenkoa V L, Andrault D, Fiquet G, Mezouar M and Rubic D C 2001 Appl. Phys. Lett. 78 1385 [7] Sj? str?m H, Stafstr?m S, Boman M and Sundgren J E 1995 Phys. Rev. Lett. 75 1336 [8] Schnick W 1993 Angew. Chem. Int. Ed. 32 1580 [9] Sj? str?m H, Hultman L, Sundgren J E, Hainsworth S V, Page T F and Theunissen G S A M 1996 J. Vac. Sci. Technol. A 14 56 [10] Jhi S H, Thm J, Louie S G and Cohen M L 1999 Nature 399 132 [11] Taneike M, Abe F and Sawada K 2003 Nature 424 294 [12] Zhang S 1993 Mater. Sci. Eng. A 163 141 [13] Vep? ek S, Reiprich S and Shizhi L 1995 Appl. Phys. Lett. 66 2640 [14] Niederhofer A, Neslá dek P, M?nnling H D, Moto K, Vep?ek S and Jílek M 1999 Surf. Coat. Technol. 120 173 [15] Vep? ek S, Nesládek P, Niederhofer A, Glatz F, Jílek M and ?íma M 1998 Surf. Coat. Technol. 108 138 [16] Vep? ek S, Niederhofer A, Moto K, Bolom T, M?nnling H D, Nesladek P, Dollinger G and Bergmaier A 2000 Surf. Coat. Technol. 133 152 [17] Saugnac F, Teyssandier F and Marchand A 1992 J. Am. Ceram. Soc. 75 161 [18] Nozaki H and Itoh S 1996 J. Phys. Chem. Solids 57 41 [19] Kar T, Cuma M and Scheiner S 2000 J. Mol. Struct. 556 275 [20] Kaner R B, Kouvetakis J, Warble C E, Sattler M L and Bartlett N 1987 Mater. Res. Bull. 22 399 [21] Perrone A, Caricato A P, Luches A, Dinescu M, Ghica C, Sandu V and Andrei A 1998 Appl. Surf. Sci. 133 239 [22] Gago R, Guerrero I J, Albella J M and Terminello L J 2001 Appl. Phys. Lett. 78 3430 [23] Widany J, Verwoerd W S and Frauenheim T 1998 Diamond Relat. Mater. 7 1633 [24] Luo X, Guo X, Liu Z, He J, Yu D, Xu B, Tian Y and Wang H T 2007 Phys. Rev. B 76 092107 [25] Yao B, Liu L and Su W H 1999 J. Appl. Phys. 86 2464 [26] Sun J, Zhou X F, Fan Y X, Chen J, Wang H T, Guo X J, He J L and Tian Y J 2006 Phys. Rev. B 73 045108 [27] Yuge K, Seko A, Koyama Y, Oba F and Tanaka I 2008 Phys. Rev. B 77 094121 [28] Takashima H and Kanno Y 2005 Sci. Technol. Adv. Mater. 6 910 [29] Mattesini M and Matar S F 2001 Int. J. Inorg. Mater. 3 943 [30] Knittle E, Kaner B B, Jeanloz R and Cohen M L 1995 Phys. Rev. B 51 12149 [31] Solozhenkoa V L, Andrault D, Fiquet F and Rubie D C 2001 Appl. Phys. Lett. 78 1385 [32] Sun H, Jhi S H, Roundy D, Cohen M L and Louie S G 2001 Phys. Rev. B 64 094108 [33] Li K, Wang X, Zhang F and Xue D 2008 Phys. Rev. Lett. 100 235504 [34] Dong H, He D, Duffy T S and Zhao Y 2009 Phys. Rev. B 79 014105 [35] Liu X, Jia X, Zhang Z, Li Y, Hu M, Zhou Z and Ma H 2011 Cryst. Growth Des. 11 1006 [36] Sun S, Jia X, Zhang Z, Li Y, Yan B, Liu X and Ma H 2013 J. Cryst. Growth 377 22 [37] Khabashesku V N, Gu Z, Brinson B, Zimmerman J L, Margrave J L, Davydov V A, Kashevarova L S and Rakhmanina A V 2002 J. Phys. Chem. B 106 11155 [38] Popov M, Kyotani M, Nemanich R J and Koga Y 2002 Phys. Rev. B 65 033408 [39] Popov M, Kyotani M and Koga Y 2003 Diamond Relat. Mater. 12 833 [40] Kumar R S, Pravica G, Cornelius A L, Nicol M F, Hu M Y and Chow P C 2007 Diamond Relat. Mater. 16 1250 [41] Xu S, Wang L, Yuan R, Xu X and Cai Y 2015 Phys. Lett. A 379 2116 [42] Pan Z, Sun H, Zhang Y and Chen C 2009 Phys. Rev. Lett. 102 055503 [43] Dong Z and Song Y 2010 J. Phys. Chem. C 114 1782 [44] Meng Y, Mao H K, Eng P J, Trainor T P, Newville M, Hu M Y, Kao C, Shu J, Hausermann D and Hemley R J 2004 Nat. Mater. 3 111 [45] Xu S, Wang L, Qiao X, Xu X and Cai Y 2015 Comput. Mater. Sci. 110 241 [46] Cai Y, Wang H, Xu S, Hu Y, Liu N and Xu X 2016 AIP Adv. 6 065225 [47] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [48] Fuchs M and Scheffler M 1996 Phys. Rev. B 54 11169 [49] Yuan Q, Zhao Y P, Li L M and Wang T H 2009 J. Phys. Chem. C 113 6107 [50] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063 [51] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [52] Tromans D 2011 Int. J. Res. Rev. Appl. Sci. 6 462 [53] Chen X Q, Niu H, Franchini C, Li D and Li Y 2011 Phys. Rev. B 84 121405 [54] Zang J L, Yuan Q, Wang F C and Zhao Y P 2009 Comput. Mater. Sci. 46 621 [55] Grimvall G, Magyari-K? pe B, Ozoli?? V and Persson K A 2012 Rev. Mod. Phys. 84 945 [56] Beckstein O, Klepeis J E, Hart G L W and Pankratov O 2001 Phys. Rev. B 63 134112 [57] Zhao Y, He D W, Daemen L L, Shen T D, Schwarz R B, Zhu Y, Bish D L, Huang J, Zhang J, Shen G, Qian J and Zerda T W 2002 J. Mater. Res. 17 3139 [58] Datchi F, Dewaele A, Godec Y L and Loubeyre P 2007 Phys. Rev. B 75 214104 [59] Levinshtein M E, Rumyantsev S L, Shur M S 2001 Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, and SiGe (New York: John Wiley & Sons) [60] Grimsditch M, Zouboulis E S and Polian A 1994 J. Appl. Phys. 76 832 [61] ? imunek A and Vacká? J 2006 Phys. Rev. Lett. 96 085501 [62] Bucknum M J and Castro E A 2006 J. Chem. Theory Comput. 2 775 [63] Kumar R S, Pravica M G, Cornelius A L, Nicol M F, Hu M Y and Chow P C 2007 Diamond Relat. Mater. 16 1250 [64] Zhao X, Liu Y, Inoue S, Suzuki T, Jones R O and Ando Y 2004 Phys. Rev. Lett. 92 125502 [65] Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A and Ralph D C 2003 Nature 425 380
[1]
. [J]. 中国物理快报, 2021, 38(7): 76101-.
[2]
. [J]. 中国物理快报, 2021, 38(4): 46201-.
[3]
. [J]. 中国物理快报, 2021, 38(2): 26101-.
[4]
. [J]. 中国物理快报, 2020, 37(8): 87105-087105.
[5]
. [J]. 中国物理快报, 2020, 37(1): 16101-.
[6]
. [J]. 中国物理快报, 2019, 36(6): 68101-068101.
[7]
. [J]. 中国物理快报, 2019, 36(3): 36101-.
[8]
. [J]. 中国物理快报, 2019, 36(1): 13101-.
[9]
. [J]. 中国物理快报, 2018, 35(6): 66101-.
[10]
. [J]. 中国物理快报, 2018, 35(3): 36104-036104.
[11]
. [J]. 中国物理快报, 2017, 34(8): 86102-.
[12]
. [J]. 中国物理快报, 2017, 34(3): 30303-030303.
[13]
. [J]. 中国物理快报, 2017, 34(1): 16101-016101.
[14]
. [J]. 中国物理快报, 2015, 32(03): 36102-036102.
[15]
. [J]. 中国物理快报, 2013, 30(6): 67101-067101.