Superconductivity in Shear Strained Semiconductors
Chang Liu1,2, Xianqi Song1, Quan Li1,2*, Yanming Ma1,2*, and Changfeng Chen3*
1State Key Lab of Superhard Materials, and International Center for Computational Methods and Software, College of Physics, Jilin University, Changchun 130012, China 2International Center of Future Science, Jilin University, Changchun 130012, China 3Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, USA
Abstract:Semiconductivity and superconductivity are remarkable quantum phenomena that have immense impact on science and technology, and materials that can be tuned, usually by pressure or doping, to host both types of quantum states are of great fundamental and practical significance. Here we show by first-principles calculations a distinct route for tuning semiconductors into superconductors by diverse large-range elastic shear strains, as demonstrated in exemplary cases of silicon and silicon carbide. Analysis of strain driven evolution of bonding structure, electronic states, lattice vibration, and electron-phonon coupling unveils robust pervading deformation induced mechanisms auspicious for modulating semiconducting and superconducting states under versatile material conditions. This finding opens vast untapped structural configurations for rational exploration of tunable emergence and transition of these intricate quantum phenomena in a broad range of materials.
Liu Z, Dong Q, Shan P, Wang Y, Dai J, Jana R, Chen K, Sun J, Wang B, Yu X, Liu G, Uwatoko Y, Sui Y, Yang H, Chen G, and Cheng J 2020 Chin. Phys. Lett.37 047102
[11]
Hicks C W, Brodsky D O, Yelland E A, Gibbs A S, Bruin J A N, Barber M E, Edkins S D, Nishimura K, Yonezawa S, Maeno Y, Mackenzie A P 2014 Science344 283
Bustarret E, Marcenat C, Achatz P, Kacmarcik J, Levy F, Huxley A, Ortega L, Bourgeois E, Blase X, Debarre D, and Boulmer J 2006 Nature444 465
[23]
Ekimov E A, Sidorov V A, Bauer E D, Melnik N N, Curro N J, Thompson J D, and Stishov S M 2004 Nature428 542
[24]
Takano Y, Nagao M, Sakaguchi I, Tachiki M, Hatano T, Kobayashi K, Umezawa H, and Kawarada H 2004 Appl. Phys. Lett.85 2851
[25]
Zhang G, Turner S, Ekimov E A, Vanacken J, Timmermans M, Samuely T, Sidorov V A, Stishov S M, Lu Y, Deloof B, Goderis B, Van Tendeloo G, Van de Vondel J, and Moshchalkov V V 2014 Adv. Mater.26 2034
The Supplemental Material provides further details on computational procedures and parameters, stress-strain relations under various loading conditions for Si and SiC, electronic density of states calculated using the HSE functional to determine the band gap of Si and SiC under various shear strains, structural changes of shear strained Si, relation between the flattening of the stress curve and phonon frequency softening for Si and electronic band structures at selected shear strains for Si and SiC.
Carbotte J P and Marsiglio F 2003 Electron-Phonon Superconductivity in The Physics of Superconductors edited by Bennemann K H and Ketterson J B (Berlin: Heidelberg)
Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, and Eremets M I 2019 Nature569 528
[76]
Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, and Hemley R J 2019 Phys. Rev. Lett.122 027001
[77]
Hong F, Yang L X, Shan P F, Yang P T, Liu Z Y, Sun J P, Yin Y Y, Yu X H, Cheng J G, and Zhao Z X 2020 Chin. Phys. Lett.37 107401
[78]
Sun D, Minkov V S, Mozaffari S, Chariton S, Prakapenka V B, Eremets M I, Balicas L, and Balakirev F F 2020 arXiv:2010.00160 [cond-mat.supr-con]
[79]
Gao Y, Ma Y Z, An Q, Levitas V, Zhang Y, Feng B, Chaudhuri J, and Goddard W A 2019 Carbon146 364