Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene
Jing Du1,2† , Bosai Lyu1,2† , Wanfei Shan1,2† , Jiajun Chen1,2 , Xianliang Zhou1,2 , Jingxu Xie3 , Aolin Deng1,2 , Cheng Hu1,2 , Qi Liang1,2 , Guibai Xie4 , Xiaojun Li4 , Weidong Luo1,2,5* , and Zhiwen Shi1,2*
1 Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China3 Institute of Physics, Xi'an Jiaotong University, Xi'an 710049, China4 National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi'an), Xi'an 710100, China5 Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract :Detection of local strain at the nanometer scale with high sensitivity remains challenging. Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phonon frequency. As a non-polar crystal, intrinsic bilayer graphene possesses little infrared response at its transverse optical phonon frequency. The reported optical detection of local strain is enabled by applying a vertical electrical field that breaks the symmetry of the two graphene layers and introduces finite electrical dipole moment to graphene phonon. The activated phonon further interacts with continuum electronic transitions, and generates a strong Fano resonance. The resulted Fano resonance features a very sharp near-field infrared scattering peak, which leads to an extraordinary sensitivity of $\sim $0.002% for the strain detection. Our results demonstrate the first nano-scale near-field Fano resonance, provide a new way to probe local strains with high sensitivity in non-polar crystals, and open exciting possibilities for studying strain-induced rich phenomena.
收稿日期: 2021-03-11
出版日期: 2021-04-16
引用本文:
. [J]. 中国物理快报, 2021, 38(5): 56301-056301.
Jing Du, Bosai Lyu, Wanfei Shan, Jiajun Chen, Xianliang Zhou, Jingxu Xie, Aolin Deng, Cheng Hu, Qi Liang, Guibai Xie, Xiaojun Li, Weidong Luo, and Zhiwen Shi. Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene. Chin. Phys. Lett., 2021, 38(5): 56301-056301.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/38/5/056301
或
https://cpl.iphy.ac.cn/CN/Y2021/V38/I5/56301
[1] Guinea F, Katsnelson M I, and Geim A K 2010 Nat. Phys. 6 30
[2] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, and Javey A 2014 Nano Lett. 14 4592
[3] Yan W et al. 2013 Nat. Commun. 4 2159
[4] Pereira V M and Neto A H C 2009 Phys. Rev. Lett. 103 046801
[5] Ju L et al. 2015 Nature 520 650
[6] Jiang L et al. 2016 Nat. Mater. 15 840
[7] Lin Y C, Dumcenco D O, Huang Y S, and Suenaga K 2014 Nat. Nanotechnol. 9 391
[8] Ahn G H et al. 2017 Nat. Commun. 8 608
[9] Robinson I and Harder R 2009 Nat. Mater. 8 291
[10] Wang Y D, Tian H, Stoica A D, Wang X L, Liaw P K, and Richardson J W 2003 Nat. Mater. 2 101
[11] Hÿtch M, Houdellier F, Hüe F, and Snoeck E 2008 Nature 453 1086
[12] Hu G et al. 2020 Nature 582 209
[13] Chen M, Lin X, Dinh T H, Zheng Z, Shen J, Ma Q, Chen H, Jarillo-Herrero P, and Dai S 2020 Nat. Mater. 19 1307
[14] Huber A J, Ziegler A, Köck T, and Hillenbrand R 2009 Nat. Nanotechnol. 4 153
[15] Lyu B et al. 2019 Nano Lett. 19 1982
[16] Ni G X et al. 2019 Nat. Commun. 10 4360
[17] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, and Wang F 2009 Nature 459 820
[18] Mak K F, Lui C H, Shan J, and Heinz T F 2009 Phys. Rev. Lett. 102 256405
[19] Oostinga J B, Heersche H B, Liu X, Morpurgo A F, and Vandersypen L M K 2008 Nat. Mater. 7 151
[20] Cao Y et al. 2018 Nature 556 80
[21] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43
[22] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2020 Nature 583 215
[23] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, and Dean C R 2019 Science 363 1059
[24] Choi Y et al. 2019 Nat. Phys. 15 1174
[25] Lu X et al. 2019 Nature 574 653
[26] Yan J, Zhang Y, Kim P, and Pinczuk A 2007 Phys. Rev. Lett. 98 166802
[27] Kuzmenko A B, Benfatto L, Cappelluti E, Crassee I, van der Marel D, Blake P, Novoselov K S, and Geim A K 2009 Phys. Rev. Lett. 103 116804
[28] Tang T T et al. 2010 Nat. Nanotechnol. 5 32
[29] Si C, Liu Z, Duan W, and Liu F 2013 Phys. Rev. Lett. 111 196802
[30] Sunku S S et al. 2018 Science 362 1153
[31] Fano U 1961 Phys. Rev. 124 1866
[32] Fan P, Yu Z, Fan S, and Brongersma M L 2014 Nat. Mater. 13 471
[33] Miroshnichenko A E, Flach S, and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[34] Limonov M, Rykov A, Tajima S, and Yamanaka A 1998 Phys. Rev. Lett. 80 825
[35] Chen H, Liu S, Zi J, and Lin Z 2015 ACS Nano 9 1926
[36] Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, and Soljačić M 2013 Nature 499 188
[37] Sinev I S, Mukhin I S, Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Samusev A K, and Kivshar Y S 2015 Nanoscale 7 11904
[38] Limonov M F, Rybin M V, Poddubny A N, and Kivshar Y S 2017 Nat. Photon. 11 543
[39] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[40] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[41] Blöchl P E 1994 Phys. Rev. B 50 17953
[42] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[44] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[1]
. [J]. 中国物理快报, 2021, 38(10): 107401-107401.
[2]
. [J]. 中国物理快报, 2021, 38(8): 86301-086301.
[3]
DOU Xiu-Ming;SUN Bao-Quan;XIONG Yong-Hua;HUANG She-Song;NIHai-Qiao;NIU Zhi-Chuan. Temperature Dependence of Photoluminescence from Single and Ensemble InAs/GaAs Quantum Dots [J]. 中国物理快报, 2008, 25(9): 3440-3443.
[4]
ZHOU Ben-Liang;LIAO Wen-Hu;ZHOU Guang-Hui;. Conductance of a Quantum Dot in the Presence of a Phonon Field [J]. 中国物理快报, 2008, 25(2): 722-725.
[5]
HOU Jun-Hua;LIANG Xi-Xia. Self-Trapping of Acoustic Polaron in One Dimension [J]. 中国物理快报, 2007, 24(11): 3222-3224.
[6]
ZHAO Feng-Qi;GONG Jian;. Energy of a Polaron in a Wurtzite Nitride Finite Parabolic Quantum Well [J]. 中国物理快报, 2007, 24(5): 1327-1330.
[7]
ZHANG Ji-Ye;LIANG Xi-Xia;. Ground State of a Polaron in a Symmetric Triangular Quantum Well [J]. 中国物理快报, 2006, 23(8): 2198-2201.
[8]
HE Xiao-Yong;CAO Jun-Cheng;L{U} Jing-Tao;FENG Song-Lin. Simulation of Confined and Interface Phonons Scattering in Terahertz Quantum Cascade Laser [J]. 中国物理快报, 2005, 22(12): 3163-3165.
[9]
REN Qing-Bao;CHEN Qing-Hu. Two-Site Holstein Model: a Variational Wavefunction Analysis [J]. 中国物理快报, 2005, 22(11): 2914-2917.
[10]
WANG Zhi-Ping;LIANG Xi-Xia;. Polaron Energy and Effective Mass in Parabolic Quantum Wells [J]. 中国物理快报, 2005, 22(9): 2367-2371.
[11]
YU Bing;CAO Jun-Cheng;FENG Song-Lin. Interface Phonon Modes in Quantum Cascade Lasers [J]. 中国物理快报, 2005, 22(9): 2403-2406.
[12]
QIU Qing-Chun. Operatorization and Unitary Transformation Approaches to Product Jahn--Teller Problems [J]. 中国物理快报, 2005, 22(8): 2009-2011.
[13]
LIU Yong;LI Guang;FENG Shuang-Jiu;LI Xiao-Guang. Jahn-Teller Distortions Cooperating with Magnetic Interaction in
the Raman Spectra of La0.75 Ca0.25 MnO3 Thin Film [J]. 中国物理快报, 2003, 20(9): 1603-1606.
[14]
ZHAO Feng-Qi;LIANG Xi-Xia. Polarons with Spatially Dependent Mass in a Finite Parabolic Quantum Well [J]. 中国物理快报, 2002, 19(7): 974-977.
[15]
CHEN Qing-Hu;WANG Zhuang-Bing;WU Fu-Li;LUO Meng-Bo;YUAN Yong-Hong;JIAO Zheng-Kuan. Variational Path-Integral Study on Bound Polarons in Parabolic Quantum Dots and Wires [J]. 中国物理快报, 2001, 18(5): 668-671.