Urtra-Hard Bonds in P -Carbon Stronger than Diamond
GUO Wen-Feng, WANG Ling-Sheng, LI Zhi-Ping, XIA Mei-Rong, GAO Fa-Ming**
Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004
Abstract :The hardness and ideal strength of P -carbon, i.e., a new carbon phase for the cold-compressed carbon with an orthogonal structure recently proposed and named as P -carbon, are investigated by means of first-principles calculations. The strength calculations reveal that the failure mode in P -carbon is dominated by the tensile type. The ideal tensile strength of P -carbon is calculated to be 76.7 GPa in the [001] direction, which is higher than that of the previously known most stable Z -carbon, of 71.4 GPa. Meanwhile, the theoretical Vickers hardness of P -carbon is estimated as 89 GPa, which is comparable with that of diamond. Especially, two types of bonds in P -carbon with hardness values of 114 GPa and 105 GPa are significantly stronger than those of diamond. The results provide insight into exploration of the ultra-hard P -carbon for potentially technological applications.
收稿日期: 2015-05-19
出版日期: 2015-10-02
:
62.20.-x
(Mechanical properties of solids)
[1] Miller E D, Nesting D C and Badding J V 1997 Chem. Mater. 9 18 [2] Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y and Tian Y J 2003 Phys. Rev. Lett. 91 015502 [3] Mao W L, Mao H K, Eng P J, Trainor T P, Newville M, Kao C C, Heinz D L, Shu J, Meng Y and Hemley R J 2003 Science 302 425 [4] Kumar R S, Pravica M G, Cornelius A L, Nicol M F, Hu M Y and Chow P C 2007 Diamond Relat. Mater. 16 1250 [5] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704 [6] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227 [7] Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O and Solozhenko V L 2009 Nature 457 863 [8] Goedecker S 2004 J. Chem. Phys. 120 9911 [9] Li Q, Ma Y M, Oganov A R, Wang H B, Wang H, Xu Y, Cui T, Mao H K and Zou G T 2009 Phys. Rev. Lett. 102 175506 [10] Umemoto K, Wentzcovitch R M, Saito S and Miyake T 2010 Phys. Rev. Lett. 104 125504 [11] Wang J T, Chen C F and Kawazoe Y 2011 Phys. Rev. Lett. 106 075501 [12] Amsler M, Flores-Livas J A, Lehtovaara L, Balima F, Ghasemi S A, Machon D, Pailhès S, Willand A, Caliste D, Botti S, San Miguel A, Goedecker S and Marques M A L 2012 Phys. Rev. Lett. 108 065501 [13] Niu H Y, Chen X Q, Wang S B, Li D Z, Mao W L and Li Y Y 2012 Phys. Rev. Lett. 108 135501 [14] Zhao Z S, Xu B, Zhou X F, Wang L M, Wen B, He J L, Liu Z Y, Wang H T and Tian Y J 2011 Phys. Rev. Lett. 107 215502 [15] Wang Z W, Zhao Y S, Tait K, Liao X Z, Schiferl D, Zha C S, Downs R T, Qian J, Zhu Y T and Shen T D 2004 Proc. Natl. Acad. Sci. U.S.A. 101 13699 [16] Li Z P and Gao F M 2012 Phys. Chem. Chem. Phys. 14 869 [17] Li Z P, Gao F M and Xu Z M 2012 Phys. Rev. B 85 144115 [18] Li Z P, Gao F M and Xu Z M 2012 Comput. Mater. Sci. 62 55 [19] Gao F M, Zhang J C and Li Z P 2014 RSC Adv. 4 32345 [20] Gou H Y, Li Z P, Niu H, Gao F M, Zhang J W, Ewing R C and Lian J 2012 Appl. Phys. Lett. 100 111907 [21] Gou H Y, Li Z P, Wang L M, Lian J and Wang Y C 2012 AIP Adv. 2 012171 [22] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [23] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [25] Zhang Y, Sun H and Chen C F 2006 Phys. Rev. B 73 144115 [26] Zhang R F, Veprek S and Argon A S 2008 Phys. Rev. B 77 172103 [27] Yang J, Sun H and Chen C F 2008 J. Am. Chem. Soc. 130 7200 [28] Chen X Q, Fu C L and Podloucky R 2008 Phys. Rev. B 77 064103 [29] Chen S Y, Gong X G and Wei S H 2007 Phys. Rev. Lett. 98 015502 [30] Gao F M, Xu R and Liu K 2005 Phys. Rev. B 71 052103 [31] Gao F M 2006 Phys. Rev. B 73 132104 [32] Gutiérrez G, Menéndez-Proupin E and Singh A K 2006 J. Appl. Phys. 99 103504 [33] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115 [34] Hill R 1952 Proc. Phys. Soc. Sect. A 65 349 [35] Pugh S F 1954 Philos. Mag. A 45 823 [36] Gao F M and Gao L H 2010 J. Superhard Mater. 32 148 [37] Zhang M, Liu H Y, Du Y H, Zhang X X, Wang Y C and Li Q 2013 Phys. Chem. Chem. Phys. 15 14120 [38] He C Y, Sun L Z, Zhang C X, Peng X Y, Zhang K W and Zhong J X 2012 Solid State Commun. 152 1560 [39] Li D, Bao K, Tian F B, Zeng Z W, He Z, Liu B B and Cui T 2012 Phys. Chem. Chem. Phys. 14 4347 [40] Zhu Q, Zeng Q F and Oganov A R 2012 Phys. Rev. B 85 201407 [41] Wang J T, Chen C F and Kawazoe Y 2012 J. Chem. Phys. 137 024502 [42] Amsler M, Flores-Livas J A, Marques M A L, Botti S and Goedecker S 2013 Eur. Phys. J. B 86 383 [43] Tian F, Dong X, Zhao Z S, He J L and Wang H T 2012 J. Phys.: Condens. Matter 24 165504 [44] He C Y and Zhong J X 2014 Solid State Commun. 181 24 [45] Savin A, Nesper R, Wengert S and F ?ssler T F 1997 Angew. Chem. Int. Ed. Engl. 36 1808 [46] Zhang R F, Lin Z J and Veprek S 2011 Phys. Rev. B 83 155452 [47] McSkimin H J, Andreatch J P and Glynn P 1972 J. Appl. Phys. 43 985
[1]
. [J]. 中国物理快报, 2021, 38(8): 86301-086301.
[2]
. [J]. 中国物理快报, 2021, 38(7): 76102-.
[3]
. [J]. 中国物理快报, 2021, 38(4): 46201-.
[4]
. [J]. 中国物理快报, 2020, 37(11): 116201-.
[5]
. [J]. 中国物理快报, 2019, 36(5): 56201-.
[6]
. [J]. 中国物理快报, 2019, 36(3): 36201-.
[7]
. [J]. 中国物理快报, 2018, 35(3): 36102-.
[8]
. [J]. 中国物理快报, 2017, 34(6): 66101-.
[9]
. [J]. 中国物理快报, 2016, 33(10): 106102-106102.
[10]
. [J]. 中国物理快报, 2016, 33(03): 36201-036201.
[11]
. [J]. 中国物理快报, 2015, 32(07): 76401-076401.
[12]
. [J]. 中国物理快报, 2015, 32(06): 64301-064301.
[13]
. [J]. 中国物理快报, 2014, 31(11): 116201-116201.
[14]
. [J]. 中国物理快报, 2014, 31(05): 56803-056803.
[15]
. [J]. Chin. Phys. Lett., 2013, 30(2): 28301-028301.