Improvement of Cyclic Stability of Na$_{0.67}$Mn$_{0.8}$Ni$_{0.1}$Co$_{0.1}$O$_{2}$ via Suppressing Lattice Variation
Zhongmin Ren1 , Muqin Wang1,3* , Shuaishuai Chen2 , Lei Ding2 , Hua Li1 , Jian Liu1 , Jieyun Zheng4* , Zhihong Liu1 , Deyu Wang1,2* , and Mingkui Wang3
1 Key Laboratory of Optoelectronic Chemical Materials and Devices, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China3 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan 430074, China4 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract :Strategies to prolong operational life are highly pursued to strengthen the advantage of cost-effectiveness on sodium-ion batteries (SIBs). We demonstrate the crucial influence of particles' internal mechanical strains on durability of cathode, which does not attract enough attentions from the community. Among the investigated samples, 2% Ti-modified-Na$_{0.67}$Ni$_{0.1}$Co$_{0.1}$Mn$_{0.8}$O$_{2}$ suppresses the $c$-axis lattice variation by 38%, attains the reversible capacity 86% higher after 200 cycles, and still keeps intact morphology. This approach indicates that the mechanical properties could tailor cyclic stability of cathode, which is particular important to further improve competitiveness for SIBs.
收稿日期: 2021-03-08
出版日期: 2021-07-05
引用本文:
. [J]. 中国物理快报, 2021, 38(7): 76102-.
Zhongmin Ren, Muqin Wang, Shuaishuai Chen, Lei Ding, Hua Li, Jian Liu, Jieyun Zheng, Zhihong Liu, Deyu Wang, and Mingkui Wang. Improvement of Cyclic Stability of Na$_{0.67}$Mn$_{0.8}$Ni$_{0.1}$Co$_{0.1}$O$_{2}$ via Suppressing Lattice Variation. Chin. Phys. Lett., 2021, 38(7): 76102-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/38/7/076102
或
https://cpl.iphy.ac.cn/CN/Y2021/V38/I7/76102
[1] Yabuuchi N, Kubota K, Dahbi M, and Komaba S 2014 Chem. Rev. 114 11636
[2] Kundu D, Talaie E, Duffort V, and Nazar L F 2015 Angew. Chem. Int. Ed. 54 3431
[3] Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y, and Cho J 2015 Angew. Chem. Int. Ed. 54 4440
[4] Kim J, Lee H, Cha H, Yoon M, Park M, and Cho J 2018 Adv. Energy Mater. 8 1702028
[5] Thackeray M M, Wolverton C, and Isaacs E D 2012 Energy & Environ. Sci. 5 7854
[6] Li H S, Ding Y, Ha H, Shi Y, Peng L L, Zhang X G, Ellison C J, and Yu G H 2017 Adv. Mater. 29 1700898
[7] Wang P F, You Y, Yin Y X, Wang Y S, Wan L J, Gu L, and Guo Y G 2016 Angew. Chem. Int. Ed. 55 7445
[8] Yoon H J, Na R K, Jin H J, and Yun Y S 2018 Adv. Energy Mater. 8 1870027
[9] Xiong X, Ding D, Bu Y, Wang Z, Huang B, Guo H, and Li X 2014 J. Mater. Chem. A 2 11691
[10] Sun Y K, Myung S T, Park B C, Prakash J, Belharouak I, and Amine K 2009 Nat. Mater. 8 320
[11] Jung Y S, Lu P, Cavanagh A S, Ban C, Kim G H, Lee S H, George S M, Harris S J, and Dillon A C 2013 Adv. Energy Mater. 3 213
[12] Choi N S, Chen Z, Freunberger S A et al. 2012 Angew. Chem. Int. Ed. 51 9994
[13] Jung S K, Gwon H, Hong J, Park K Y, Seo D H, Kim H, Hyun J, Yang W, and Kang K 2014 Adv. Energy Mater. 4 1300787
[14] Scrosati B and Garche J 2010 J. Power Sources 195 2419
[15] Lee S W, Kim M S, Jeong J H et al. 2017 J. Power Sources 360 206
[16] Yoon W S, Hanson J, McBreen J, and Yang X Q 2006 Electrochem. Commun. 8 859
[17] Oh P, Song B, Li W, and Manthiram A 2016 J. Mater. Chem. A 4 5839
[18] Cho Y, Oh P, and Cho J 2013 Nano Lett. 13 1145
[19] Hwang J Y, Kim J, Yu T Y, and Sun Y K 2019 Adv. Energy Mater. 9 1803346
[20] Zhang X, Guo S, Liu P, Li Q, Xu S, Liu Y, Jiang K, He P, Chen M, Wang P, and Zhou H 2019 Adv. Energy Mater. 9 1900189
[21] Wang Q, Mariyappan S, Vergnet J, Abakumov A M, Rousse G, Rabuel F, Chakir M, and Tarascon J M 2019 Adv. Energy Mater. 9 1901785
[22] Zhu Y E, Qi X G, Chen X Q, Zhou X L, Zhang X, Wei J P, Hu Y S, and Zhou Z 2016 J. Mater. Chem. A 4 11103
[23] Xu J L, Han Z, Jiang K, Bai P, Liang Y, Zhang X, Wang P, Guo S, and Zhou H 2020 Small 16 1904388
[24] Wang K, Wan H, Yan P, Chen X, Fu J, Liu Z, Deng H, Gao F, and Sui M 2019 Adv. Mater. 31 1904816
[25] Wang Q C, Meng J K, Yue X Y, Qiu Q Q, Song Y, Wu X J, Fu Z W, Xia Y Y, Shadike Z, Wu J, Yang X Q, and Zhou Y N 2019 J. Am. Chem. Soc. 141 840
[26] Zhang K, Kim D, Hu Z, Park M, Noh G, Yang Y, Zhang J, Lau V W, Chou S L, Cho M, Choi S Y, and Kang Y M 2019 Nat. Commun. 10 5203
[27] Hu X, Qiang W, and Huang B 2017 Energy Storage Mater. 8 141
[28] Cheng X, Liu M, Yin J, Ma C, Dai Y, Wang D, Mi S, Qiang W, Huang B, and Chen Y 2020 Small 16 1906433
[29] Ren Z, Zhang X, Liu M, Zhou J, Sun S, He H, and Wang D 2019 J. Power Sources 416 104
[30] Ren Z, Shen C, Liu M, Liu J, Zhang S, Yang G, Huai L, Liu X, Wang D, and Li H 2020 Energy Storage Mater. 28 1
[31] Wang K, Yan P, and Sui M 2018 Nano Energy 54 148
[32] Yan P, Zheng J, Chen T, Luo L, Jiang Y, Wang K, Sui M, Zhang J G, Zhang S, and Wang C 2018 Nat. Commun. 9 2437
[33] Yan P, Zheng J, Gu M, Xiao J, Zhang J G, and Wang C M 2017 Nat. Commun. 8 14101
[34] Xu Z, Rahman M M, Mu L, Liu Y, and Lin F 2018 J. Mater. Chem. A 6 21859
[35] Guo S H, Liu P, Yu H J, Zhu Y B, Chen M W, Ishida M, and Zhou H S 2015 Angew. Chem. Int. Ed. 54 5894
[36] Mu L Q, Xu S Y, Li M, Hu Y S, Li H, Chen L Q, and Huang X J 2015 Adv. Mater. 27 6928
[37] Singh G, Tapia-Ruiz N, Lopez D A J M, Maitra U, Somerville J W, Armstrong A R, de Martinez I J, Rojo T, and Bruce P G 2016 Chem. Mater. 28 5087
[38] Wang P, Xiao Y, Piao N, Wang Q, Ji X, Jin T, Guo Y, Liu S, Deng T, Cui C, Chen L, Guo Y, Yang X, and Wang C 2020 Nano Energy 69 104474
[39] Liu K, Tan S, Moon J, Jafta C J, Li C, Kobayashi T, Lyu H, Bridges C A, Men S, Guo W, Sun Y, Zhang J, Paranthaman M P, Sun X, and Dai S 2020 Adv. Energy Mater. 10 2000135
[40] Xiao B W, Liu H S, Liu J et al. 2017 Adv. Mater. 29 1703764
[41] Yoon C S, Jun D W, Myung S T, and Sun Y K 2017 ACS Energy Lett. 2 1150
[42] Zhou Y N, Wang P F, Niu Y B, Li Q, Yu X, Yin Y X, Xu S, and Guo Y G 2019 Nano Energy 55 143
[43] Hwang J Y, Myung S T, and Sun Y K 2017 Chem. Soc. Rev. 46 3529
[44] Wang Y S, Yu X Q, Xu S Y, Bai J M, Xiao R J, Hu Y S, Li H, Yang X Q, Chen L Q, and Huang X J 2013 Nat. Commun. 4 2365
[45] Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, and Komaba S 2012 Nat. Mater. 11 512
[46] Berthelot R, Carlier D, and Delmas C 2011 Nat. Mater. 10 74
[47] Ryn H, Park K, Yoon C, and Sun Y 2018 Chem. Mater. 30 1155
[1]
. [J]. 中国物理快报, 2020, 37(3): 38101-.
[2]
. [J]. 中国物理快报, 2019, 36(4): 46102-.
[3]
. [J]. 中国物理快报, 2018, 35(12): 126101-.
[4]
. [J]. 中国物理快报, 2018, 35(3): 36101-.
[5]
. [J]. 中国物理快报, 2015, 32(10): 106801-106801.
[6]
LU Xue-Hui;KANG Lin;ZHOU Lei;CHEN Jian;JI Zheng-Ming;CAO Chun-Hai;JIN Biao-Bing; XU Wei-Wei;WU Pei-Heng;WANG Xiao-Shu. Growth and Characterization of a Kind of Nitrogen-Rich Niobium Nitride for Bolometer Applications at Terahertz Frequencies [J]. 中国物理快报, 2008, 25(11): 4076-4078.
[7]
. [J]. 中国物理快报, 2017, 34(11): 116101-.