Computational Prediction of a Novel Superhard $sp^{3}$ Trigonal Carbon Allotrope with Bandgap Larger than Diamond
Ruoyun Lv1 , Xigui Yang1* , Dongwen Yang1 , Chunyao Niu1 , Chunxiang Zhao1 , Jinxu Qin1 , Jinhao Zang1 , Fuying Dong2 , Lin Dong1* , and Chongxin Shan1*
1 Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics (Ministry of Education), School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China2 College of Automotive Engineering, Jilin University, Changchun 130022, China
Abstract :Searching for new carbon allotropes with superior properties has been a longstanding interest in material sciences and condensed matter physics. Here we identify a novel superhard carbon phase with an 18-atom trigonal unit cell in a full-$sp^{3}$ bonding network, termed tri-C$_{18}$ carbon, by first-principles calculations. Its structural stability has been verified by total energy, phonon spectra, elastic constants, and molecular dynamics simulations. Furthermore, tri-C$_{18}$ carbon has a high bulk modulus of 400 GPa and Vickers hardness of 79.0 GPa, comparable to those of diamond. Meanwhile, the simulated x-ray diffraction pattern of tri-C$_{18}$ carbon matches well with the previously unexplained diffraction peaks found in chimney soot, indicating the possible presence of tri-C$_{18}$ carbon. Remarkably, electronic band structure calculations reveal that tri-C$_{18}$ carbon has a wide indirect bandgap of 6.32 eV, larger than that of cubic diamond, indicating its great potential in electronic or optoelectronic devices working in the deep ultraviolet region.
收稿日期: 2021-03-23
出版日期: 2021-07-05
:
61.50.Ah
(Theory of crystal structure, crystal symmetry; calculations and modeling)
31.15.ae
(Electronic structure and bonding characteristics)
63.20.dk
(First-principles theory)
61.05.cc
(Theories of x-ray diffraction and scattering)
引用本文:
. [J]. 中国物理快报, 2021, 38(7): 76101-.
Ruoyun Lv, Xigui Yang, Dongwen Yang, Chunyao Niu, Chunxiang Zhao, Jinxu Qin, Jinhao Zang, Fuying Dong, Lin Dong, and Chongxin Shan. Computational Prediction of a Novel Superhard $sp^{3}$ Trigonal Carbon Allotrope with Bandgap Larger than Diamond. Chin. Phys. Lett., 2021, 38(7): 76101-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/38/7/076101
或
https://cpl.iphy.ac.cn/CN/Y2021/V38/I7/76101
[1] Hirsch A 2010 Nat. Mater. 9 868
[2] Pan L S and Kania D R 1995 Diamond: Electronic Properties and Applications (Boston: Springer)
[3] Lin C N, Lu Y J, Yang X, Tian Y Z, Gao C J, Sun J L, Dong L, Zhong F, Hu W D, and Shan C X 2018 Adv. Opt. Mater. 6 1800068
[4] Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L, and Shan C X 2018 J. Mater. Chem. C 6 5727
[5] Liu T, Yang X G, Li Z, Hu Y W, Lv C F, Zhao W B, Zang J H, and Shan C X 2020 Chin. Phys. B 29 108102
[6] Zhang Z, Lin C, Yang X, Tian Y, Gao C, Li K, Zang J, Yang X, Dong L, and Shan C 2021 Carbon 173 427
[7] Kroto H W, Health J R, O'Brien S C, Curl R F, and Smalley R E 1985 Nature 318 162
[8] Lijima S 1991 Nature 354 56
[9] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666
[10] Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L, and Anderson H L 2019 Science 365 1299
[11] Mao W L, Mao H, Eng P J, Trainor T P, Newville M, Kao C, Heinz D L, Shu J, Meng Y, and Hemley R J 2003 Science 302 425
[12] Wang Z, Zhao Y, Tait K, Liao X, Schiferl D, Zha C, Downs R T, Qian J, Zhu Y, and Shen T 2004 Proc. Natl. Acad. Sci. USA 101 13699
[13] Lin Y, Zhang L, Mao H, Chow P, Xiao Y, Baldini M, Shu J, and Mao W L 2011 Phys. Rev. Lett. 107 175504
[14] Wang L, Liu B, Li H, Yang W, Ding Y, Sinogeikin S V, Meng Y, Liu Z, Zeng X C, and Mao W L 2012 Science 337 825
[15] Ke F, Chen Y, Yin K, Yan J, Zhang H, Liu Z, Tse J S, Wu J, Mao H, and Chen B 2019 Proc. Natl. Acad. Sci. USA 116 9186
[16] Ke F, Zhang L, Chen Y, Yin K, Wang C, Tzeng Y K, Lin Y, Dong H, Liu Z, Tse J S, Mao W L, Wu J, and Chen B 2020 Nano Lett. 20 5916
[17] Wang Y, Yao M, Chen Y, Dong J, Yang X, Du M, Liu R, Liu H, Li Y, and Liu B 2018 Appl. Phys. Lett. 113 021901
[18] Du M, Yao M, Dong J, Ge P, Dong Q, Kováts P S, Chen S, Liu R, Liu B, Cui T, Sundqvist B, and Liu B 2018 Adv. Mater. 30 1706916
[19] Shiell T B, de Tomas C, McCulloch D G, McKenzie D R, Basu A, Suarez-Martinez I, Marks N A, Boehler R, Haberl B, and Bradby J E 2019 Phys. Rev. B 99 024114
[20] Dong J, Yao Z, Yao M, Li R, Hu K, Zhu L, Wang Y, Sun H, Sundqvist B, Yang K, and Liu B 2020 Phys. Rev. Lett. 124 065701
[21] Yang X, Lv C, Yao Z, Yao M, Qin J, Li X, Shi L, Du M, Liu B, and Shan C X 2020 Carbon 159 266
[22] Yao M, Fan X, Zhang W, Bao Y, Liu R, Sundqvist B, and Liu B 2017 Appl. Phys. Lett. 111 101901
[23] Zeng Z, Sheng H, Yang L, Lou H, Tan L, Prakapenka V B, Greenberg E, and Zeng Q 2019 Phys. Rev. Mater. 3 033608
[24] Zhang Y, Yao M, Du M, Yao Z, Wang Y, Dong J, Yang Z, Sundqvist B, Kováts P S, and Liu B 2020 J. Am. Chem. Soc. 142 7584
[25] Shang Y C, Shen F R, Hou X Y, Chen L Y, Hu K, Li X, Liu R, Tao Q, Zhu P W, Liu Z D, Yao M G, Zhou Q, Cui T, and Liu B B 2020 Chin. Phys. Lett. 37 080701
[26] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[27] Li Q, Ma Y, Oganov A R, Wang H, Wang H, Xu Y, Cui T, Mao H K, and Zou G 2009 Phys. Rev. Lett. 102 175506
[28] Umemoto K, Wentzcovitch R M, Saito S, and Miyake T 2010 Phys. Rev. Lett. 104 125504
[29] Wang J T, Chen C, and Kawazoe Y 2011 Phys. Rev. Lett. 106 075501
[30] Zhao Z, Xu B, Zhou X F, Wang L M, Wen B, He J, Liu Z, Wang H T, and Tian Y 2011 Phys. Rev. Lett. 107 215502
[31] Amsler M, Flores-Livas J A, Lehtovaara L, Balima F, Ghasemi S A, Machon D, Pailhès S, Willand A, Caliste D, Botti S, San M A, Goedecker S, and Marques M A L 2012 Phys. Rev. Lett. 108 065501
[32] Niu H, Chen X Q, Wang S, Li D, Mao W L, and Li Y 2012 Phys. Rev. Lett. 108 135501
[33] Wang J Q, Zhao C X, Niu C Y, Sun Q, and Jia Y 2016 J. Phys.: Condens. Matter 28 475402
[34] Li Z Z, Lian C S, Xu J, Xu L F, Wang J T, and Chen C 2015 Phys. Rev. B 91 214106
[35] Li Z Z, Wang J T, Mizuseki H, and Chen C 2018 Phys. Rev. B 98 094107
[36] He C, Zhang C X, Xiao H, Meng L, and Zhong J X 2017 Carbon 112 91
[37] Yang X, Lv C, Liu S, Zang J, Qin J, Du M, Yang D, Li X, Liu B, and Shan C X 2020 Carbon 156 309
[38] Sheng X L, Yan Q B, Ye F, Zheng Q R, and Su G 2011 Phys. Rev. Lett. 106 155703
[39] Yang X, Yao M, Wu X, Liu S, Chen S, Yang K, Liu R, Cui T, Sundqvist B, and Liu B 2017 Phys. Rev. Lett. 118 245701
[40] He C, Shi X, Clark S J, Li J, Pickard C J, Ouyang T, Zhang C, Tang C, and Zhong J 2018 Phys. Rev. Lett. 121 175701
[41] Hoffmann R, Kabanov A A, Golov A A, and Proserpio D M 2016 Angew. Chem. Int. Ed. 55 10962
[42] Wang Y, Lv J, Zhu L, and Ma Y 2010 Phys. Rev. B 82 094116
[43] Wang Y, Lv J, Zhu L, and Ma Y 2012 Comput. Phys. Commun. 183 2063
[44] Zhang S, He J, Zhao Z, Yu D, and Tian Y 2019 Chin. Phys. B 28 106104
[45] Wu X, Shi X, Yao M, Liu S, Yang X, Zhu L, Cui T, and Liu B 2017 Carbon 123 311
[46] Ma Y M 2019 Chin. Phys. Lett. 36 090101
[47] Luo K, Liu B, Sun L, Zhao Z, and Tian Y 2021 Chin. Phys. Lett. 38 028102
[48] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[49] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[50] Krukau A V, Vydrov O A, Izmaylov A F, and Scuseria G E 2006 J. Chem. Phys. 125 224106
[51] Togo A, Oba F, and Tanaka I 2008 Phys. Rev. B 78 134106
[52] Hill R 1952 Proc. Phys. Soc. A 65 349
[53] Chen X Q, Niu H, Li D, and Li Y 2011 Intermetallics 19 1275
[54] Wang J T, Weng H, Nie S, Fang Z, Kawazoe Y, and Chen C 2016 Phys. Rev. Lett. 116 195501
[55] Wang J T, Chen C, Wang E, and Kawazoe Y 2015 Sci. Rep. 4 4339
[56] Occelli F, Loubeyre P, and LeToullec R 2003 Nat. Mater. 2 151
[57] Li Z, Gao F, and Xu Z 2012 Phys. Rev. B 85 144115
[58] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X, and Meng J 2007 Phys. Rev. B 76 054115
[59] Pantea D, Brochu S, Thiboutot S, Ampleman G, and Scholz G 2006 Chemosphere 65 821
[1]
. [J]. 中国物理快报, 2021, 38(4): 46201-.
[2]
. [J]. 中国物理快报, 2021, 38(2): 26101-.
[3]
. [J]. 中国物理快报, 2020, 37(8): 87105-087105.
[4]
. [J]. 中国物理快报, 2020, 37(1): 16101-.
[5]
. [J]. 中国物理快报, 2019, 36(6): 68101-068101.
[6]
. [J]. 中国物理快报, 2019, 36(3): 36101-.
[7]
. [J]. 中国物理快报, 2019, 36(1): 13101-.
[8]
. [J]. 中国物理快报, 2018, 35(6): 66101-.
[9]
. [J]. 中国物理快报, 2018, 35(3): 36104-036104.
[10]
. [J]. 中国物理快报, 2017, 34(8): 86102-.
[11]
. [J]. 中国物理快报, 2017, 34(3): 30303-030303.
[12]
. [J]. 中国物理快报, 2017, 34(1): 16101-016101.
[13]
. [J]. 中国物理快报, 2016, 33(10): 106102-106102.
[14]
. [J]. 中国物理快报, 2015, 32(03): 36102-036102.
[15]
. [J]. 中国物理快报, 2013, 30(6): 67101-067101.