Surface-Enhanced Raman Scattering of Hydrogen Plasma-Treated Few-Layer MoTe$_{2}$
Xiao-Xue Jing1 , Da-Qing Li2 , Yong Zhang1 , Xiang-Yu Hou1 , Jie Jiang1 , Xing-Ce Fan1 , Meng-Chen Wang1 , Shao-Peng Feng1 , Yuan-fang Yu , Jun-Peng Lu1 , Zhen-Liang Hu1* , and Zhen-Hua Ni1*
1 Department of Physics, Southeast University, Nanjing 211189, China2 Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
Abstract :Two-dimensional surface-enhanced Raman scattering (SERS) substrates have drawn intense attention due to their excellent spectral reproducibility, high uniformity and perfect anti-interference ability. However, the inferior detection sensitivity and low enhancement have limited the practical application of two-dimensional SERS substrates. To address this issue, we propose that the interaction between the MoTe$_{2}$ substrate and the analyte rhodamine 6G molecules could be remarkably enhanced by the introduced p-doping effect and lattice distortion of MoTe$_{2}$ via hydrogen plasma treatment. After the treatment, the SERS is greatly improved, the enhancement factor of probe molecules reaches $1.83 \times 10^{6}$ as well as the limit of detection concentration reaches $10^{-13}$ M. This method is anticipated to afford new enhancement probability for other 2D materials, even non-metal oxide semiconductor SERS substrates.
收稿日期: 2021-04-09
出版日期: 2021-07-05
:
42.65.Dr
(Stimulated Raman scattering; CARS)
52.75.Di
(Ion and plasma propulsion)
61.05.js
(X-ray photoelectron diffraction)
引用本文:
. [J]. 中国物理快报, 2021, 38(7): 74203-.
Xiao-Xue Jing, Da-Qing Li, Yong Zhang, Xiang-Yu Hou, Jie Jiang, Xing-Ce Fan, Meng-Chen Wang, Shao-Peng Feng, Yuan-fang Yu , Jun-Peng Lu, Zhen-Liang Hu, and Zhen-Hua Ni. Surface-Enhanced Raman Scattering of Hydrogen Plasma-Treated Few-Layer MoTe$_{2}$. Chin. Phys. Lett., 2021, 38(7): 74203-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/38/7/074203
或
https://cpl.iphy.ac.cn/CN/Y2021/V38/I7/74203
[1] Lee D, Choe Y J, Lee M, Jeong D H, and Paik S R 2011 Langmuir 27 12782
[2] Ryu H J, Shin H, Oh S, Joo J H, Choi Y, and Lee J S 2020 ACS Appl. Mater. & Interfaces 12 2842
[3] Alvarez-Puebla R A, dos Santos, Jr David S, and Aroca R F 2007 Analyst 132 1210
[4] Pearson B, Mills A, Tucker M, Gao S, McLandsborough L, and He L 2018 Food Microbiol. 72 89
[5] Kneipp J, Kneipp H, and Kneipp K 2008 Chem. Soc. Rev. 37 1052
[6] Wang X, Shi W, She G, and Mu L 2012 Phys. Chem. Chem. Phys. 14 5891
[7] Philip D, Gopchandran K G, Unni C, and Nissamudeen K M 2008 Spectrochim. Acta Part A 70 780
[8] Zhang A Q, Wang Q L, Gao Y, Cheng S H, and Li H D 2020 Chin. Phys. Lett. 37 068102
[9] Ye X, Shen J, Tao X, Ye G, and Yang B 2021 Chin. Phys. Lett. 38 038102
[10] Zhu C, Meng G, Huang Q, Zhang Z, Xu Q, Liu G, Huang Z, and Chu Z 2011 Chem. Commun. 47 2709
[11] Zhong Y T, Cheng Z Q, Ma L, Wang J H, Hao Z H, and Wang Q Q 2014 Chin. Phys. Lett. 31 047302
[12] Bozzini B, Mele C, D'Urzo L, and Romanello V 2006 J. Appl. Electrochem. 36 973
[13] Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, and Liu Z 2010 Nano Lett. 10 553
[14] Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, and Dresselhaus M S 2014 Nano Lett. 14 3033
[15] Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, and Lombardi J R 2016 ACS Photon. 3 1164
[16] Zhang R, Drysdale D, Koutsos V, and Cheung R J 2017 Adv. Funct. Mater. 27 1702455
[17] Feng S, Dos S M C, Carvalho B R, Lv R, Li Q, Fujisawa K, Elias A L, Lei Y, Perea-Lopez N, and Endo M J 2016 Sci. Adv. 2 e1600322
[18] Ying Y, Peng M, Zhang Y M, Han J C, Zhang X H et al. 2017 Adv. Funct. Mater. 27 1606694
[19] Wang P, Xia M, Liang O, Sun K, Cipriano A F, Schroeder T, Liu H, and Xie Y H 2015 Anal. Chem. 87 10255
[20] Tan Y, Ma L, Gao Z, Chen M, and Chen F 2017 Nano Lett. 17 2621
[21] Zhang L S, Fang Y, and Wang P J 2012 Chin. Phys. Lett. 29 114210
[22] Yao J, Quan Y, Gao R, Li J, Chen L, Liu Y, Lang J, Shen H, Wang Y, Yang J, and Gao M 2019 Langmuir 35 8921
[23] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, and Idrobo J C 2013 Nano Lett. 13 2615
[24] Leiter R, Li Y, and Kaiser U 2020 Nanotechnology 31 495704
[25] Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, and Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503
[26] Chen J, Zhu J, Wang Q, Wan J, and Liu R 2020 Small 16 2001428
[27] Tomašević-Ilić T, Jovanović Ð, Popov I, Fandan R, Pedrós J, Spasenović M, and Gajić R 2018 Appl. Surf. Sci. 458 446
[28] Kong X, Xu Y, Cui Z, Li Z, Liang Y, Gao Z, Zhu S, and Yang X 2018 Appl. Catal. B: Environ. 230 11
[29] Zhu J, Wang Z, Yu H, Li N, Zhang J, Meng J, Liao M, Zhao J, Lu X, Du L, Yang R, Shi D, Jiang Y, and Zhang G 2017 J. Am. Chem. Soc. 139 10216
[30] Zhang L, Feng S, Xiao S, Shen G, Zhang X, Nan H, Gu X, and Ostrikov K 2018 Appl. Surf. Sci. 441 639
[31] Sun L, Hu H, Zhan D, Yan J, Liu L, Teguh J S, Yeow E K, Lee P S, and Shen Z 2014 Small 10 1090
[32] Ouyang B, Zhang Y, Xia X, Rawat R S, and Fan H J 2018 Mater. Today Nano 3 28
[33] Ctibor P, Štengl V, Píš I, Zahoranová T, and Nehasil V 2012 Ceram. Int. 38 3453
[34] Ruppert C, Aslan O B, and Heinz T F 2014 Nano Lett. 14 6231
[35] Chen B, Sahin H, Suslu A, Ding L, Bertoni M I, Peeters F M, and Tongay S 2015 ACS Nano 9 5326
[36] Islam M R, Kang N, Bhanu U, Paudel H P, Erementchouk M, Tetard L, Leuenberger M N, and Khondaker S I 2014 Nanoscale 6 10033
[37] Liu H, Han N, and Zhao J 2015 RSC Adv. 5 17572
[38] Zheng X, Wei Y, Deng C, Huang H, Yu Y, Wang G, Peng G, Zhu Z, Zhang Y, Jiang T, Qin S, Zhang R, and Zhang X 2018 ACS Appl. Mater. & Interfaces 10 30045
[39] Qu D, Liu X, Huang M, Lee C, Ahmed F, Kim H, Ruoff R S, Hone J, and Yoo W J 2017 Adv. Mater. 29 1606433
[40] Zuo P, Jiang L, Li X, Ran P, Li B, Song A, Tian M, Ma T, Guo B, Qu L, and Lu Y 2019 Nanoscale 11 485
[41] Tao L, Chen K, Chen Z, Cong C, Qiu C, Chen J, Wang X, Chen H, Yu T, Xie W, Deng S, and Xu J B 2018 J. Am. Chem. Soc. 140 8696
[42] Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, and Zhao Z 2017 Nat. Commun. 8 1993
[43] Wang X, Shi W, Jin Z, Huang W, Lin J, Ma G, Li S, and Guo L 2017 Angew. Chem. Int. Ed. Engl. 56 9851
[44] Lin J, Shang Y, Li X, Yu J, Wang X, and Guo L 2017 Adv. Mater. 29 1604797
[45] Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y, Li L, Li Q, Geng F, and Zhao Z 2015 Nat. Commun. 6 7800
[46] Li C, Yan X, Song X, Bao W, Ding S, Zhang D W, and Zhou P 2017 Nanotechnology 28 415201
[1]
. [J]. 中国物理快报, 2020, 37(4): 44202-.
[2]
. [J]. 中国物理快报, 2018, 35(4): 44201-.
[3]
. [J]. 中国物理快报, 2016, 33(04): 44208-044208.
[4]
. [J]. 中国物理快报, 2015, 32(11): 114207-114207.
[5]
. [J]. 中国物理快报, 2015, 32(07): 74202-074202.
[6]
. [J]. 中国物理快报, 2015, 32(06): 64201-064201.
[7]
. [J]. 中国物理快报, 2015, 32(01): 14203-014203.
[8]
. [J]. 中国物理快报, 2013, 30(8): 84202-084202.
[9]
WANG Yan-Bin**;HOU Jing**;CHEN Zi-Lun;CHEN Sheng-Ping;SONG Rui;LI Ying;YANG Wei-Qiang;LU Qi-Sheng
. High-Efficiency Supercontinuum Generation at 12.8W in an All-Fiber Device [J]. 中国物理快报, 2011, 28(7): 74208-074208.
[10]
CHEN Xiao-Dong;;MAO Qing-He**;SUN Qing;ZHAO Jia-Sheng;LI Pan;FENG Su-Juan. An All-Fiber Gas Raman Light Source Based on a Hydrogen-Filled Hollow-Core Photonic Crystal Fiber Pumped with a Q-Switched Fiber Laser [J]. 中国物理快报, 2011, 28(7): 74201-074201.
[11]
HE Ping;FAN Rong-Wei;XIA Yuan-Qin;YU Xin;YAO Yong;CHEN De-Ying;**
. Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature [J]. 中国物理快报, 2011, 28(4): 47804-047804.
[12]
LIU Xing;LIU Wei;YIN Jun;QU Jun-Le;LIN Zi-Yang;NIU Han-Ben**
. Optimization of Supercontinuum Sources for Ultra-Broadband T-CARS Spectroscopy [J]. 中国物理快报, 2011, 28(3): 34202-034202.
[13]
ZHOU Zi-Chao;WEI Rong**;SHI Chun-Yan;WANG Yu-Zhu**. Observation of Modulation Transfer Spectroscopy in the Deep Modulation Regime [J]. 中国物理快报, 2010, 27(12): 124211-124211.
[14]
GUO Yuan;RUAN Shuang-Chen;YAN Pei-Guang;LI Irene-Ling;YU Yong-Qin. Supercontinuum Gneneration and Modes Analysis in Secondary Cores of a Hollow-Core Photonic Crystal Fiber [J]. 中国物理快报, 2010, 27(4): 44212-044212.
[15]
MEN Zhi-Wei;FANG Wen-Hui;SUN Xiu-Ping;LI Zuo-Wei;YI Han-Wei;WANG Zhao-Min;GAO Shu-Qin;LU Guo-Hui. Influence of Temperature on Stimulated Raman Scattering in Single-Mode Silica Fibre [J]. 中国物理快报, 2008, 25(11): 3999-4002.