摘要We study the geometric phase of a qutrit-qubit mixed-spin system in an external homogeneous magnetic field. Both the spin-spin interaction strength J and the external magnetic field B can affect the geometric phase of the system. In addition, we consider the negativity of the composite system. The relationship between the negativity and the geometric phase is obtained. Finally, we calculate the geometric phase for a thermal mixed state and show how the geometric phase depends on the rescaled coupling parameter and temperature. In the limit T→0, we can recover the result of the ground state. This analysis has some implications in realistic implementations of geometric quantum computation.
Abstract:We study the geometric phase of a qutrit-qubit mixed-spin system in an external homogeneous magnetic field. Both the spin-spin interaction strength J and the external magnetic field B can affect the geometric phase of the system. In addition, we consider the negativity of the composite system. The relationship between the negativity and the geometric phase is obtained. Finally, we calculate the geometric phase for a thermal mixed state and show how the geometric phase depends on the rescaled coupling parameter and temperature. In the limit T→0, we can recover the result of the ground state. This analysis has some implications in realistic implementations of geometric quantum computation.
[1] Berry M V 1984 Proc. R. Soc. London A 392 45
[2] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[3] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339
[4] Pati A K 1995 Phys. Rev. A 52 2576
[5] Uhlmann A 1986 Rep. Math. Phys. 24 229
[6] Uhlmann A 1991 Lett. Math. Phys. 21 229
[7] Singh K, Tong D M, Basu K, Chen J L and Du J F 2003 Phys. Rev. A 67 032106
[8] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[9] Zhu S L and Zanardi P 2005 Phys. Rev. A 72 020301
[10] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[11] Sjöqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedral V 2000 Phys. Rev. Lett. 85 2845
[12] Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2003 Phys. Rev. Lett. 90 160402
[13] Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2004 Phys. Rev. Lett. 92 020402
[14] Tong D M, Sjöqvist E, Kwek L C and Oh C H 2004 Phys. Rev. Lett. 93 080405
[15] Tong D M, Chen J L and Du J F 2003 Chin. Phys. Lett. 20 793
[16] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[17] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[18] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
[19] Hartmann M J et al 2007 Phys. Rev. Lett. 99 160501
[20] Amesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[21] Sun Y, Chen Y G and Chen H 2003 Phys. Rev. A 68 044301
[22] Rezakhani A T and Zanardi P 2006 Phys. Rev. A 73 052117
[23] Kwan M K et al 2008 Phys. Rev. A 77 062311
[24] Zyczkowski K, Horodecki P, Sanpera A et al 1998 Phys. Rev. A 58 883
[25] Peres A 1996 Phys. Rev. Lett. 77 1413
[26] Vidal G and Werner R R 2002 Phys. Rev. A 65 032314