Photoluminescence from Nd Doped Anodic Aluminium Oxide
ZHOU Zhang-Kai1, PENG Xiao-Niu1, SU Xiong-Rui1, HAO Zhong-Hua 1,2
1Department of Physics, Wuhan University, Wuhan 4300722Key Laboratory of Acoustic and Photonic Materials and Devices (Ministry of Education), Wuhan University, Wuhan 430072
Photoluminescence from Nd Doped Anodic Aluminium Oxide
ZHOU Zhang-Kai1, PENG Xiao-Niu1, SU Xiong-Rui1, HAO Zhong-Hua 1,2
1Department of Physics, Wuhan University, Wuhan 4300722Key Laboratory of Acoustic and Photonic Materials and Devices (Ministry of Education), Wuhan University, Wuhan 430072
摘要We prepare Nd doped anodic aluminium oxide (Nd:AAO) template by using Nd doped aluminium foils through two-step anodization processes. Photoluminescence (PL) from the Nd:AAO template with the annealing temperature higher than 400°C is observed, and the PL intensity enhanced with the increasing annealing temperature is found. We investigate the crystallization of Nd:AAO template and the excitation wavelength dependence of PL intensity, showing that the PL results from the Nd doped in the template. The approach presented may probably facilitate the fabricating of AAO with good light-emitting property, which can be used in fabrication of multifunctional nanosized films and may find applications in photonic devices.
Abstract:We prepare Nd doped anodic aluminium oxide (Nd:AAO) template by using Nd doped aluminium foils through two-step anodization processes. Photoluminescence (PL) from the Nd:AAO template with the annealing temperature higher than 400°C is observed, and the PL intensity enhanced with the increasing annealing temperature is found. We investigate the crystallization of Nd:AAO template and the excitation wavelength dependence of PL intensity, showing that the PL results from the Nd doped in the template. The approach presented may probably facilitate the fabricating of AAO with good light-emitting property, which can be used in fabrication of multifunctional nanosized films and may find applications in photonic devices.
[1] Martin C R 1994 Science 266 1961 [2] Masuda H and Fukuda K 1995 Science 268 1466 [3] Preston C K and Moskovits M 1993 J. Phys. Chem. 97 8495 [4] Hurst S J et al 2006 Angew. Chem. Int. Ed. 452672 [5] Lee W et al 2006 Nat. Mater. 5 741 [6] Zhao S Y et al 2007 Adv. Mater. 19 3004 [7] Wang S et al 2007 Nanotechnology 18 015303 [8] Pereira A et al 2008 Small 4 572 [9] Drury A et al 2007 Chem. Mater. 19 4252 [10] Skinner K, Dwyer C and Washburn S 2006 Nano Lett. 6 2758 [11] Li Z J et al 2006 J. Phys. Chem. B 110 22382 [12] Gong H M et al 2008 Plasmonics 3 59 [13] Qu L T et al 2004 Adv. Mater. 16 1200 [14] Zhang S H et al 2004 Chem. Comm. 2004 1106 [15] Rahman S and Yang H 2003 Nano Lett. 3 439 [16] Shimizu T et al 2007 Adv. Mater. 19 917 [17] Zhao S Y et al 2006 J. Am. Chem. Soc. 12812352 [18] Liu L et al 2008 Nanotechnology 19 335604 [19] Wang Q Q et al 2007 Nano Lett. 7 723 [20] Liang C H et al 2007 Adv. Funct, Mater. 171466 [21] Lin Z W et al 2006 J. Phys. Chem. B 110 23007 [22] Zheng M J et al 2001 Appl. Phys. Lett. 79 839 [23] Lei Y et al 2001 Appl. Phys. Lett. 78 1125 [24] Gaponenko N V et al 2000 Appl. Phys. Lett. 76 1006 [25] Zhang X P et al 2007 Appl. Phys. Lett. 90133114 [26] Du Y et al 1999 Appl. Phys. Lett. 74 2951 [27] Li T et al 2004 J. Phys. Condens. Matter. 162463 [28] Li T, Yang S G and Du Y W 2005 Nanotechnology 16 365 [29] Liu J F and Li Y D 2007 J. Mater. Chem. 171797 [30] Deng H et al 2008 J. Am. Chem. Soc. 130 2032 [31] Deng H et al 2008 Cryst. Growth Des. 8 4432 [32] Yu R B et al 2007 Adv. Mater. 19 838 [33] Yu X F et al 2008 Adv. Mater. 20 4118 [34] Wen Q et al 1995 Appl. Phys. Lett. 66 293 [35] Monteito T et al 2002 Nucl. Instr. And Meth. InPhys. Res. B 191 638 [36] De Azevedo W M et al 2004 Appl. Sur. Sci 234457 [37] Moran C E, Hale G D and Halas N J 2001 Langmuir 17 8376 [38] Diaz-Torres L A et al 2006 Opt. Mater. 29 12 [39] Xia H R et al 2001 Jpn. J. Appl. Phys. 40 202 [40] Cheng M T, Liu S D and Wang Q Q 2008 Appl. Phys.Lett. 92 162107 [41] Liu S D et al 2008 Opt. Lett. 33 851