Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling
Yan-Ning Liu1,2 , Xiao-Long Weng1,2 , Peng Zhang3* , Wen-Xin Li1,2 , Yu Gong3 , Li Zhang1,2 , Tian-Cheng Han1,2 , Pei-Heng Zhou1,2 , and Long-Jiang Deng1,2*
1 National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 611731, China2 Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China3 Shenyang Aircraft Design and Research Institute, Shenyang 110035, China
Abstract :Infrared metamaterial absorber (MMA) based on metal-insulator-metal (MIM) configuration with flexible design, perfect and selective absorption, has attracted much attention recently for passive radiative cooling applications. To cool objects passively, broadband infrared absorption (i.e. 8–14 µm) is desirable to emit thermal energy through atmosphere window. We present a novel MMA composed of multilayer MIM resonators periodically arranged on a PbTe/MgF$_{2}$ bilayer substrate. Verified by the rigorous coupled-wave analysis method, the proposed MMA shows a relative bandwidth of about 45% (from 8.3 to 13.1 µm with the absorption intensity over 0.8). The broadband absorption performs stably over a wide incident angle range (below 50$^{\circ}$) and predicts 12 K cooling below ambient temperature at nighttime. Compared with the previous passive radiative coolers, our design gets rid of the continuous metal substrate and provides an almost ideal transparency window (close to 100%) for millimeter waves over 1 mm. The structure is expected to have potential applications in thermal control of integrated devices, where millimeter wave signal compatibility is also required.
收稿日期: 2020-10-07
出版日期: 2021-03-02
:
03.50.De
(Classical electromagnetism, Maxwell equations)
42.70.Km
(Infrared transmitting materials)
42.25.Bs
(Wave propagation, transmission and absorption)
44.40.+a
(Thermal radiation)
81.05.Xj
(Metamaterials for chiral, bianisotropic and other complex media)
引用本文:
. [J]. 中国物理快报, 2021, 38(3): 34201-.
Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling. Chin. Phys. Lett., 2021, 38(3): 34201-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/38/3/034201
或
https://cpl.iphy.ac.cn/CN/Y2021/V38/I3/34201
[1] Zhao B, Hu M, Ao X, Chen N and Pei G 2019 Appl. Energy 236 489
[2] Li W and Fan S 2018 Opt. Express 26 15995
[3] Zeyghami M, Goswami D Y and Stefanakos E 2018 Sol. Energy Mater. Sol. Cells 178 115
[4] Hossain M M and Gu M 2016 Adv. Sci. 3 1500360
[5] Zhao D, Aili A, Zhai Y, Xu S, Tan G, Yin X and Yang R 2019 Appl. Phys. Rev. 6 021306
[6] Fan S and Raman A 2018 Natl. Sci. Rev. 5 132
[7] Song J, Seo J, Han J, Lee J and Lee B J 2020 Appl. Phys. Lett. 117 094101
[8] Catrysse P B, Song A Y and Fan S 2016 ACS Photon. 3 2420
[9] Wu W, Lin S, Wei M, Huang J, Xu H, Lu Y and Song W 2020 Sol. Energy Mater. Sol. Cells 210 110512
[10] Wu D, Liu C, Xu Z, Liu Y, Yu Z, Yu L, Chen L, Li R, Ma R and Ye H 2018 Mater. & Des. 139 104
[11] Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R and Yin X 2017 Science 355 1062
[12] Huang Z and Ruan X 2017 Int. J. Heat Mass Transfer 104 890
[13] Gamage S, Kang E S H, Akerlind C, Sardar S, Edberg J, Kariis H, Ederth T, Berggren M and Jonsson M P 2020 J. Mater. Chem. C 8 11687
[14] Yu W, Lu Y, Chen X, Xu H, Shoo J, Chen X, Sun Y, Hao J and Dai N 2019 Adv. Opt. Mater. 7 1900841
[15] Liu X, Chang Q, Yan M, Wang X, Zhang H, Zhou H and Fan T 2020 Phys. Chem. Chem. Phys. 22 13965
[16] Li Y, Li L, Wang F, Ge H, Xie R and An B 2020 Opt. Mater. Express 10 682
[17] Liu D, Xu Y and Xuan Y 2020 Appl. Opt. 59 6861
[18] Shrestha S, Wang Y, Overvig A C, Lu M, Stein A, Dal N L and Yu N 2018 ACS Photon. 5 3526
[19] Zou C, Ren G, Hossain M M, Nirantar S, Withayachumnankul W, Ahmed T, Bhaskaran M, Sriram S, Gu M and Fumeaux C 2017 Adv. Opt. Mater. 5 1700460
[20] Alaee R, Albooyeh M and Rockstuhl C 2017 J. Phys. D 50 503002
[21] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[22] Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O and Wang Z 2019 Adv. Opt. Mater. 7 1800995
[23] Watts C M, Liu X and Padilla W J 2012 Adv. Mater. 24 OP98
[24] Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S and Zhou L 2015 Phys. Rev. Lett. 115 235503
[25] Kim T, Bae J Y, Lee N and Cho H H 2019 Adv. Funct. Mater. 29 1807319
[26] Li W, Guler U, Kinsey N, Naik G V, Boltasseva A, Guan J, Shalaev V M and Kildishev A V 2014 Adv. Mater. 26 7959
[27] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[28] Ustun K and Turhan-Sayan G 2016 J. Appl. Phys. 120 203101
[29] Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S and Fang N X 2012 Nano Lett. 12 1443
[30] Contractor R, D'Aguanno G and Menyuk C 2018 Opt. Express 26 24031
[31] Bossard J A, Lin L, Yun S, Liu L, Werner D H and Mayer T S 2014 ACS Nano 8 1517
[32] Zhang H, Zhang H, Yang J and Liu J 2019 Opt. Express 27 5346
[33] Feng Q, Pu M B, Hu C G and Luo X G 2012 Opt. Lett. 37 2133
[34] Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z and Ran L 2013 Phys. Rev. Lett. 111 187402
[35] Hossain M M, Jia B and Gu M 2015 Adv. Opt. Mater. 3 1047
[36] Ordal M A, Bell R J, Alexander R W, J, Long L L and Querry M R 1985 Appl. Opt. 24 4493
[37] Zhou J, Economon E N, Koschny T and Soukoulis C M 2006 Opt. Lett. 31 3620
[38] Li Y, Zhang P, Liu Y, Jiang R, Gong Y, Deng L and Zhou P 2020 Opt. Commun. 472 126015
[39] Zhang N, Zhou P, Cheng D, Weng X, Xie J and Deng L 2013 Opt. Lett. 38 1125
[40] ITransmission Spectra R , Gemini Observatory (accessed: August 2020)
[41] Peng L, Liu D and Cheng H 2019 Sol. Energy Mater. Sol. Cells 193 7
[42] Liu X, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[43] Hsu P C, Liu C, Song A Y, Zhang Z, Peng Y, Xie J, Liu K, Wu C L, Catrysse P B, Cai L, Zhai S, Majumdar A, Fan S and Cui Y 2017 Sci. Adv. 3 e1700895
[44] Chen Z, Zhu L, Raman A and Fan S 2016 Nat. Commun. 7 13729
[45] Lochbaum A, Dorodnyy A, Koch U, Koepfli S M, Volk S, Fedoryshyn Y, Wood V and Leuthold J 2020 Nano Lett. 20 4169
[46] Wei Q, Huang L, Zentgraf T and Wang Y 2020 Nanophotonics 9 987
[1]
. [J]. 中国物理快报, 2018, 35(10): 106801-.
[2]
. [J]. 中国物理快报, 2018, 35(7): 74203-.
[3]
. [J]. 中国物理快报, 2013, 30(7): 77802-077802.
[4]
. [J]. Chin. Phys. Lett., 2012, 29(11): 111401-111401.
[5]
YAO Bin;ZHENG Qin-Hong;**;PENG Jin-Hui;ZHONG Ru-Neng;XIANG Tai;XU Wan-Song
. Partially Loaded Cavity Analysis by Using the 2-D FDTD Method [J]. 中国物理快报, 2011, 28(11): 118401-118401.
[6]
ZHANG Zhan-Long;DENG Jun;XIAO Dong-Ping;HE Wei;TANG Ju. An Adaptive Fast Multipole Higher Order Boundary Element Method for Power Frequency Electric Field of Substation [J]. 中国物理快报, 2010, 27(3): 34105-034105.
[7]
WANG Zhi-Yong;XIONG Cai-Dong;Keller Ole. The First-Quantized Theory of Photons [J]. 中国物理快报, 2007, 24(2): 418-420.
[8]
ZHANG Yan;SHI Jun-Jie. Enlargement of Photonic Band Gaps and Physical Picture of Photonic Band Structures [J]. 中国物理快报, 2006, 23(3): 639-642.
[9]
SHA Wei;HUANG Zhi-Xiang;WU Xian-Liang;CHEN Ming-Sheng. Total Field and Scattered Field Technique for Fourth-Order Symplectic Finite Difference Time Domain Method [J]. 中国物理快报, 2006, 23(1): 103-105.
[10]
JI Xian-Ming;XIA Yong;YIN Jian-Ping. Generation of One-Dimensional Array of Focused Hollow-Beam Pipes and Its Surface Microscopic Waveguide for Cold Atoms or Molecules [J]. 中国物理快报, 2004, 21(7): 1272-1275.
[11]
NI Yun;LIU Nan-Chun;YIN Jian-Ping;. Atomic Funnel Composed of an HE11 -Mode Output Hollow Beam [J]. 中国物理快报, 2003, 20(7): 1054-1057.
[12]
LI Kang;CHEN Wen-Jun; NAÓN Carlos M.. Classical Electromagnetic Field Theory in the Presence of Magnetic Sources [J]. 中国物理快报, 2003, 20(3): 321-324.