Exciton States and Linear Optical Spectra of Semiconducting Carbon Nanotubes under Uniaxial Strain
YU Gui-Li1,2, JIA Yong-Lei2
1Department of Physics, China University of Mining and Technology, Xuzhou 2210082National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093
Exciton States and Linear Optical Spectra of Semiconducting Carbon Nanotubes under Uniaxial Strain
YU Gui-Li1,2, JIA Yong-Lei2
1Department of Physics, China University of Mining and Technology, Xuzhou 2210082National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093
摘要Considering the exciton effect, the linear optical spectra of semiconducting single-walled carbon nanotubes (SWNTs) under uniaxial strain are theoretically studied by using the standard formulae of Orr and Ward [Mol. Phys. 20(1971)513]. It is found that due to the wrapping effect existing in the semiconducting zigzag tubes, the excitation energies of the linear optical spectra show two different kinds of variations with increasing uniaxial strain, among which one decreases such as tube (11,0), and the other increases firstly and then decreases such as tube (10,0). These variations of the linear optical spectra are consistent with the changes of the exciton binding energies or the (quasi)continuum edge of these SWNTs calculated in our previous work, which can be used as a supplemented tool to detect the deformation degree of an SWNT under uniaxial strain.
Abstract:Considering the exciton effect, the linear optical spectra of semiconducting single-walled carbon nanotubes (SWNTs) under uniaxial strain are theoretically studied by using the standard formulae of Orr and Ward [Mol. Phys. 20(1971)513]. It is found that due to the wrapping effect existing in the semiconducting zigzag tubes, the excitation energies of the linear optical spectra show two different kinds of variations with increasing uniaxial strain, among which one decreases such as tube (11,0), and the other increases firstly and then decreases such as tube (10,0). These variations of the linear optical spectra are consistent with the changes of the exciton binding energies or the (quasi)continuum edge of these SWNTs calculated in our previous work, which can be used as a supplemented tool to detect the deformation degree of an SWNT under uniaxial strain.
YU Gui-Li;JIA Yong-Lei. Exciton States and Linear Optical Spectra of Semiconducting Carbon Nanotubes under Uniaxial Strain[J]. 中国物理快报, 2009, 26(3): 37102-037102.
YU Gui-Li, JIA Yong-Lei. Exciton States and Linear Optical Spectra of Semiconducting Carbon Nanotubes under Uniaxial Strain. Chin. Phys. Lett., 2009, 26(3): 37102-037102.
[1] Saito R, Fujita M, Dresselhaus G, and Dresselhaus M S 1992 Appl. Phys. Lett. 60 2204 [2] Jorio A, Fantini C, Pimenta M A, Capaz R B, Samsonidze Ge G,Dresselhaus G, Dresselhaus M S, Jiang J, Kobayashi N, Gr\"{uneis Aand Saito R 2005 Phys. Rev. B 71 075401. [3] O'Connell M J, Bachilo S M, Huffman X B, Moore V C, Strano M S,Haroz E H, Rialon K L, Boul P J, Noon W H, Kittrell C, Ma J, Hauge RH, Weisman R B and Smalley R E 2002 Science 297 593 [4] Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E andWeisman R B 2002 Science 298 2361 [5] Fantini C, Jorio A, Souza M, Strano M S, Dresselhaus M S andPimenta M A 2004 Phys. Rev. Lett. 93 147406 [6] Samsonidze G G, Saito R, Kobayashi N, Gr\"{uneis A, Jiang J,Jorio A, Chou S G, Dresselhaus G and Dresselhaus M S 2004 Appl.Phys. Lett. 85 5703 [7] Li Z M, Tang Z K, Liu H J, Wang N, Chan C T, Saito R, Okada S,Li G D, Chen J S, Nagasawa N and Tsuda S 2001 Phys. Rev. Lett. 87 127401 [8] Hagen A and Hertel T 2003 Nano. Lett. 3 383 [9] Lebedkin S, Hennrich F, Skipa T and Kappes M M 2003 J. Phys.Chem. B 107 1949 [10] Lefebvre J, Homma Y and Finnie P 2003 Phys. Rev. Lett. 90 217401 [11] Spataru C D, Ismail-Beigi S, Benedict L X and Louie S G 2004 Phys. Rev. Lett. 92 077402 [12] Wang F et al 2004 Phys. Rev. Lett. 92 177401 [13] Liu X et al 2002 Phys. Rev. B 66 045411 [14] Zhao H and Mazumdar S 2004 Phys. Rev. Lett. 93 157402 [15] Wang Z D, Zhao H B and Mazumdar S 2006 Phys. Rev. B 74 195406 [16] Yu G L, Jia Y L and Dong J M 2007 J. Phys. Condensed Matt. 19 266222 [17] Kane C L and Mele E J 2003 Phys. Rev. Lett. 90 207401 [18] Pedersen T G 2003 Phys. Rev. B 67 073401 [19] Pedersen T G 2004 Carbon 42 1007 [20] Spataru C D, Ismail-Beigi S, Benedict L X and Louie S G 2004 Appl. Phys. A 78 1129 [21] Dukovic G, Wang F, Song D H, Sfeir M Y, Heinz T F and Brus L E2005 Nano. Lett. 5 2314 [22] Yang L, Anantram M P, Han J and Lu J P 1999 Phys. Rev. B 60 13874 [23] Yang L and Han J 2000 Phys. Rev. Lett. 85 154 [24] Kane C L and Mele E J 1997 Phys. Rev. Lett. 78 1932 [25] Wu G, Zhou J and Dong J M 2005 Phys. Rev. B 72 115411 [26] Orr B J and Ward J F 1971 Mol. Phys. 20 513 [27] Abe S, Schreiber M, Su W P and Yu J 1992 Phys. Rev. B 45 9432