Tunneling Processes in Optically Excited Quantum Dots
LI Xiu-Ping1, WEI Hua-Rong1, XU Li-Ping2, GONG Jian-Ping3, YAN Wei-Xian1
1College of Physics and Electronics, Shanxi University, Taiyuan 030006 2Department of Physics, North University of China, Taiyuan 030051 3Department of Physics, Jinzhong University, Yuci 030600
Tunneling Processes in Optically Excited Quantum Dots
LI Xiu-Ping1, WEI Hua-Rong1, XU Li-Ping2, GONG Jian-Ping3, YAN Wei-Xian1
1College of Physics and Electronics, Shanxi University, Taiyuan 030006 2Department of Physics, North University of China, Taiyuan 030051 3Department of Physics, Jinzhong University, Yuci 030600
摘要The single-electron tunneling processes in optically excited coupled quantum dots can be divided into two parts: the electron and the hole parts, which are analytically obtained in the framework of the Keldysh formalism. The tunneling process is selective tunneling, which results in dark tunneling states. The tunneling currents are co-determined by the resonance energies and probability distributions of the particular quantum channels defined by the electron-hole complex resonant states.
Abstract:The single-electron tunneling processes in optically excited coupled quantum dots can be divided into two parts: the electron and the hole parts, which are analytically obtained in the framework of the Keldysh formalism. The tunneling process is selective tunneling, which results in dark tunneling states. The tunneling currents are co-determined by the resonance energies and probability distributions of the particular quantum channels defined by the electron-hole complex resonant states.
[1] Kleemans N A J M, van Bree J, Govorov A O, Keizer J G, Hamhuis G J, Nötzel R, Silov A Y and Koenraad P M 2010 Nature Phys. 6 534
[2] Kuo D M T and Chang Y C 2005 Phys. Rev. B 72 085334
[3] Fält S, Atatüre M, Türeci1 H E, Zhao Y, Badolato A and Imamoglu A 2008 Phys. Rev. Lett. 100 106401
[4] Ediger M, Bester G, Gerardot B D, Badolato A, Petroff P M, Karrai K, Zunger A and Warburton R J 2007 Phys. Rev. Lett. 98 036808
[5] Li X P and Yan W X 2004 Chin. Phys. Lett. 21 197
[6] Chang Y C and Kuo D M T 2008 Phys. Rev. B 77 245412
[7] Yan W X, Li W F, Xu L P, Gong J P and Wen T D 2010 Phys. Lett. A 374 2262
[8] Liu Z G, Liu G J, Li L, Feng M, Li M, Lu P, Zou Y G, Li L H and Gao X 2010 Chin. Phys. Lett. 27 126801
[9] Yan W X, Zhao Y P, Wen Y B, Li X P, Xu L P and Gong J P 2010 Chin. Phys. B 19 027302
[10] Wang Z B, Zhang H C, Zhang J Y, Su H P and Wang Y A 2010 Chin. Phys. Lett. 27 127803
[11] Xia C J, Liu D S, Zhang Y T 2011 Chin. Phys. Lett. 28 093102
[12] Gong J P, Duan S Q, Yan W X, Zhao X G 2009 Sci. Chin. G Phys. Mech. Astron. 52 1146
[13] Folkes P A, Dutta M, Rudin S, Shen H, Zhou W, Smith D D, Taysing-Lara M, Newman P and Cole M 1993 Phys. Rev. Lett. 71 3379
[14] Yan W X, Li Y D, Wei H R, Xu L P and Wen T D 2011 Physica E 43 1465
[15] Liew T C H, Shelykh I A, Malpuech G 2011 Physica E 43 1543
[16] Chen P, Piermarocchi C, Sham L J, Gammon D and Steel D G 2004 Phys. Rev. B 69 075320
[17] Wen Y B and Yan W X 2008 Phys. Rev. A 77 052332
[18] Zhang Q Y, Wang B G, Shen R and Xing D Y 2010 Chin. Phys. Lett. 27 097401
[19] Sing K P, Lamba S, Joshi S K and Lamba S 2006 J. Appl. Phys. 99 124503
[20] Zhang Y T and Xu Z C 2008 Appl. Phys. Lett. 93 083106
[21] Axt V M and Kuhn T 2004 Rep. Prog. Phys. 67 433