Ultrafast Dynamics of Polythiophene with Phenyl Vinylene Branches Studied by Femtosecond Fluorescence Spectroscopy in Solution
CHU Sai-Sai1, GAO Chao2, WANG Shu-Feng1**, GONG Qi-Huang1**
1State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 2Xi'an Modern Chemistry Research Institute, Xi'an 710065
Ultrafast Dynamics of Polythiophene with Phenyl Vinylene Branches Studied by Femtosecond Fluorescence Spectroscopy in Solution
CHU Sai-Sai1, GAO Chao2, WANG Shu-Feng1**, GONG Qi-Huang1**
1State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 2Xi'an Modern Chemistry Research Institute, Xi'an 710065
摘要Two polythiophene based polymers, poly[(3-[2-[4-(2-ethyl-hexyloxy)-phenyl]-vinyl]-thiophene)-co-thiophene] (PT1) and poly(3-[2-[4-(2-ethyl-hexyloxy)-phenyl]-vinyl]-thiophene) (PT2), are synthesized and investigated by static, picosecond fluorescence spectroscopies and the femtosecond up-conversion technique in solution. Compared with pristine poly(3-hexylthiophene) (P3HT), PT1 and PT2, in which the main chains are decorated with phenyl vinylene present a 'camel back' structure in the absorption spectra. Phenyl vinylene side chains induce a new process of charge transfer, chain twisting motion and defect-induced fluorescence quenching at time scales of 1 ps, 10 ps and 150 ps, respectively.
Abstract:Two polythiophene based polymers, poly[(3-[2-[4-(2-ethyl-hexyloxy)-phenyl]-vinyl]-thiophene)-co-thiophene] (PT1) and poly(3-[2-[4-(2-ethyl-hexyloxy)-phenyl]-vinyl]-thiophene) (PT2), are synthesized and investigated by static, picosecond fluorescence spectroscopies and the femtosecond up-conversion technique in solution. Compared with pristine poly(3-hexylthiophene) (P3HT), PT1 and PT2, in which the main chains are decorated with phenyl vinylene present a 'camel back' structure in the absorption spectra. Phenyl vinylene side chains induce a new process of charge transfer, chain twisting motion and defect-induced fluorescence quenching at time scales of 1 ps, 10 ps and 150 ps, respectively.
[1] Chen H Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y and Li G 2009 Nature Photon. 3 649
[2] Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K and Heeger A J 2009 Nature Photon. 3 297
[3] Chang Y T, Hsu S L, Su M H and Wei K H 2007 Adv. Funct. Mater. 17 3326
[4] Meng K, Ding Q, Wang S, He Y, Li Y and Gong Q 2010 J. Phys. Chem. B 114 2602
[5] Kobayashi T, Yoshizawa M, Stamm U, Taiji M and Hasegawa M 1990 J. Opt. Soc. Am. B 7 1558
[6] Kobayashi T, Du J, Feng W, Yoshino K, Tretiak S, Saxena A and Bishop A R 2010 Phys. Rev. B 81 075205
[7] Du J, Wang Z, Feng W, Yoshino K and Kobayashi T 2008 Phys. Rev. B 77 195205
[8] Scheblykin I G, Yartsev A, Pullerits T, Gulbinas V and Sundstrom V 2007 J. Phys. Chem. B 111 6303
[9] Shaw P E, Ruseckas A and Samuel I D W 2008 Adv. Mater. 20 3516
[10] Cook S, Furube A and Katoh R 2008 Energ. Envion. Sci. 1 294
[11] Simas E R, Gehlen M H, Glogauer A and Akcelrud L 2008 J. Phys. Chem. A 112 5054
[12] Tretiak S, Saxena A, Martin R and Bishop A 2002 Phys. Rev. Lett. 89 97402
[13] Westenhoff S, Daniel C, Friend R H, Silva C, Sundstrom V and Yartsev A 2005 J. Chem. Phys. 122 094903
[14] Burrows H D, Seixas de Melo J, Serpa C, Arnaut L, Miguel M G, Monkman A, Hamblett I and Navaratnam S 2002 Chem. Phys. 285 3
[15] Chu S, Yi W, Wang S, Li F, Feng W and Gong Q 2008 Chem. Phys. Lett. 451 116
[16] Shen P, Ding T, Huang H, Zhao B and Tan S 2010 Synth. Met. 160 1291
[17] Xie Y, Li Y, Xiao L, Qiao Q, Dhakal R, Zhang Z, Gong Q, Galipeau D and Yan X 2010 J. Phys. Chem. C 114 14590
[18] Kraabel B, Klimov V, Kohlman R, Xu S, Wang H and McBranch D 2000 Phys. Rev. B 61 8501
[19] Chang Y T, Hsu S L, Chen G Y, Su M H, Singh T A, Diau E W G and Wei K H 2008 Adv. Funct. Mater. 18 2356
[20] Nguyen T Q, Wu J, Doan V, Schwartz B J and Tolbert S H 2000 Science 288 652
[21] Wang Y C, Zhou H, Ding J L, Chen Q, Xiao H B, Tao X M and Qian S X 2010 Chin. Phys. Lett. 27 038201
[22] Wang Y, Zhang D, Zhou H, Ding J, Chen Q, Xiao Y and Qian S 2010 J. Appl. Phys. 108 033520
[23] Fu L M, Ai X C, Li M Y, Wen X F, Hao R, Wu Y S, Wang Y and Zhang J P 2010 J. Phys. Chem. A 114 4494
[24] Han X F, Chen X H, Weng Y X and Zhang J Y 2007 J. Opt. Soc. Am. B 24 1633
[25] Lv W, Li N, Li Y and Xia A 2006 J. Am. Chem. Soc. 128 10281
[26] Hou J, Yang C and Li Y 2005 Synth. Met. 153 93
[27] Hou J, Huo L, He C, Yang C and Li Y 2006 Macromolecules 39 594
[28] Tong M, Coates N E, Moses D, Heeger A J, Beaupre S and Leclerc M 2010 Phys. Rev. B 81 125210
[29] Bock A M, Schmid D and Kryschi C 1999 J. Chem. Phys. 111 1185
[30] Wells N P, Boudouris B W, Hillmyer M A and Blank D A 2007 J. Phys. Chem. C 111 15404
[31] Westenhoff S, Beenken W J D, Friend R H, Greenham N C, Yartsev A and Sundstrom V 2006 Phys. Rev. Lett. 97 166804
[32] Nakamura T, Araki Y, Ito O, Takimiya K and Otsubo T 2008 J. Phys. Chem. A 112 1125
[33] Beenken W J D and Pullerits T 2004 J. Chem. Phys. 120 2490
[34] Meng K, Liu Y, Feng W, Zeng Q, Zhao X, Wang S and Gong Q 2010 J. Photoch. Photobio. A 210 44
[35] Kraabel B, Moses D and Heeger A 1995 J. Chem. Phys. 103 5102
[36] Rumbles G, Samuel I, Magnani L, Murray K, DeMello A, Crystall B, Moratti S, Stone B, Holmes A and Friend R 1996 Synth. Met. 76 47
[37] Kobayashi T, Hamazaki J, Arakawa M, Kunugita H, Ema K, Ochiai K, Rikukawa M and Sanui K 2000 Phys. Rev. B 62 8580
[38] Miranda P B, Moses D and Heeger A J 2004 Phys. Rev. B 70 085212