States of Excitons and Linear Optical Spectra in Metallic Single-Walled Carbon Nanotubes
YU Gui-Li1** , LI Gui-Chen2** , JIA Yong-Lei3 , TANG Gang1
1 Department of Physics, China University of Mining and Technology, Xuzhou 2211162 School of Mines, and Key Laboratory of Deep Coal Resource Mining (Ministry of Education), China University of Mining and Technology, Xuzhou 2211163 College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000
Abstract :Considering the exciton effect, the excitation energy and its binding energy of the metallic single-walled carbon nanotubes (SWNTs) are theoretically studied by using the simple tight-binding model, based on which the linear absorption spectra are also calculated. It is found that due to the trigonal warping effect, the excitation energies of the linear optical spectra all are split into two corresponding ones. Additionally, the splitting depends on both the chirality and the transition energy: (1) the splitting is maximal for the zigzag tubes, the splitting decreases with the increasing chiral angle; (2) the higher the transition energy is, the larger the splitting is. It is very interesting to find that the obtained results are in good agreement with the experimental results.
出版日期: 2014-08-22
:
71.35.-y
(Excitons and related phenomena)
71.35.Cc
(Intrinsic properties of excitons; optical absorption spectra)
78.67.Ch
(Nanotubes)
[1] Saito. R, Dresselhaus G and Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) [2] White C T, Robertson D H and Mintmire J W 1993 Phys. Rev. B 47 5485 [3] Hamada N, Sawada S and Oshiyama A 1992 Phys. Rev. Lett. 68 1579 [4] Hagen A and Hertel T 2003 Nano Lett. 3 383 [5] Kane C L and Mele E J 2003 Phys. Rev. Lett. 90 207401 [6] Perebeinos V, Tersoff J and Avouris P 2004 Phys. Rev. Lett. 92 257402 [7] Zhao H and Mazumdar S 2004 Phys. Rev. Lett. 93 157402 [8] Perebeinos V, Tersoff J and Avouris P 2005 Nano Lett. 5 2495 [9] Spataru C D, Ismail-Beigi S, Capaz R B and Louie S G 2005 Phys. Rev. Lett. 95 247402 [10] Chang E, Bussi G, Ruini A and Molinari E 2004 Phys. Rev. Lett. 92 196401 [11] Yu G L and Jia Y L 2009 Chin. Phys. Lett. 26 037102 [12] Jia Y L, Yu G L and Dong J M 2009 Nanotechnology 20 155708 [13] Yu G L, Jia Y L and Dong J M 2007 Phys. Rev. B 76 125403 [14] Jiang J, Saito R, Samsonidze G G, Jorio A, Chou S G, Dresselhaus G and Dresselhaus M S 2007 Phys. Rev. B 75 035407 [15] Jia Y L, Yu G L and Dong J M 2008 Eur. Phys. J. B 61 433 [16] Deslippe J, Spataru C, Prendergast D and Louie S G 2007 Nano Lett. 7 1626 [17] Spataru C D, Ismail-Beigi S, Benedict L X and Louie S G 2004 Phys. Rev. Lett. 92 077402 [18] Malic E, Maultzsch J, Reich S and Knorr A 2010 Phys. Rev. B 82 035433 [19] Malic E, Maultzsch J, Reich S and Knorr A 2010 Phys. Rev. B 82 115439 [20] Wang F, Cho D J, Kessler B, Deslippe J, Schuch P J, Louie S G, Zettl A, Heinz T F and Shen Y R 2007 Phys. Rev. Lett. 99 227401 [21] Berciaud S, Cognet L, Poulin P, Weisman R B and Lounis B 2007 Nano Lett. 7 1203 [22] Berciaud S, Voisin C, Yan H, Chandra B, Caldwell R, Shan Y, Brus L E, Hone J and Heinz T F 2010 Phys. Rev. B 81 041414(R) [23] May P, Telg H, Zhong G F, Robertson J, Thomsen C and Maultzsch J 2010 Phys. Rev. B 82 195412 [24] Orr B J and Ward J F 1971 Mol. Phys. 20 513 [25] Zeng H L, Zhao B T, Zhang F C and Cui X D 2009 Phys. Rev. Lett. 102 136406 [26] Wu Y, Maultzsch J, Knoesel E, Chandra B, Huang M Y, Sfeir M Y, Brus L E, Hone J and Heinz T F 2007 Phys. Rev. Lett. 99 027402
[1]
. [J]. 中国物理快报, 2020, 37(11): 117102-117102.
[2]
. [J]. 中国物理快报, 0, (): 60501-.
[3]
. [J]. 中国物理快报, 2020, 37(6): 60501-.
[4]
. [J]. 中国物理快报, 2018, 35(8): 87101-.
[5]
. [J]. 中国物理快报, 2017, 34(1): 17102-017102.
[6]
. [J]. 中国物理快报, 2016, 33(03): 37101-037101.
[7]
. [J]. Chin. Phys. Lett., 2012, 29(11): 117302-117302.
[8]
LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting ,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems [J]. 中国物理快报, 2012, 29(4): 47101-047101.
[9]
CHU Sai-Sai;GAO Chao;WANG Shu-Feng**;GONG Qi-Huang**
. Ultrafast Dynamics of Polythiophene with Phenyl Vinylene Branches Studied by Femtosecond Fluorescence Spectroscopy in Solution [J]. 中国物理快报, 2011, 28(11): 117802-117802.
[10]
LI Xiu-Ping;WEI Hua-Rong;XU Li-Ping;GONG Jian-Ping;YAN Wei-Xian
. Tunneling Processes in Optically Excited Quantum Dots [J]. 中国物理快报, 2011, 28(10): 107306-107306.
[11]
WU Cong-Jun**;Ian Mondragon-Shem;;ZHOU Xiang-Fa
. Unconventional Bose–Einstein Condensations from Spin-Orbit Coupling [J]. 中国物理快报, 2011, 28(9): 97102-097102.
[12]
ZHAO Hong-Xia;ZHAO Hui**;CHEN Yu-Guang
. Dynamical Process of Dissociation of Excitons in Polymer Chains with Impurities [J]. 中国物理快报, 2011, 28(9): 97201-097201.
[13]
YANG Shao-Peng**;HUANG Da;GE Da-Yong;LIU Bo-Ya;WANG Li-Shun;FU Guang-Sheng
. Dynamics of Exciton Diffusion in PVK:Phosphorescent Materials/Al Hetero-Structures [J]. 中国物理快报, 2011, 28(8): 87101-087101.
[14]
KIM Nam-Chol;LI Jian-Bo;LIU Shao-Ding;CHENG Mu-Tian;HAO Zhong-Hua. Influence of Excitation Pulse Width on the Second-Order Correlation Functions of the Exciton-Biexciton Emissions [J]. 中国物理快报, 2010, 27(3): 34211-034211.
[15]
SHU Shi-Wei;MA Guo-Hong. Temperature-Dependent Defect-Induced New Emission in ZnSe Crystal [J]. 中国物理快报, 2009, 26(4): 47102-047102.