摘要We present the bilinear equivalence expression of a (2+1)-dimensional integrable equation of a classical spin system. Based on this, we construct its single-soliton solutions and two-soliton solutions by Hirota's bilinear method. Meanwhile we show the evolution and propagation manners of two-solitons of the spin system graphically.
Abstract:We present the bilinear equivalence expression of a (2+1)-dimensional integrable equation of a classical spin system. Based on this, we construct its single-soliton solutions and two-soliton solutions by Hirota's bilinear method. Meanwhile we show the evolution and propagation manners of two-solitons of the spin system graphically.
DENG Ming. The Soliton Solutions of A (2+1)-Dimensional Integrable Equation of Classical Spin System[J]. 中国物理快报, 2009, 26(12): 120203-120203.
DENG Ming. The Soliton Solutions of A (2+1)-Dimensional Integrable Equation of Classical Spin System. Chin. Phys. Lett., 2009, 26(12): 120203-120203.
[1] Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1 [2] Morris H C 1976 J. Math. Phys. 17 1870 Morris H C 1979 J. Phys. A: Math. Gen. 12 261 [3] Zhang D G and Yang G X 1990 J. Phys. A: Math. Gen. 23 2133 [4] Zhao W Z, Li M L, Qi Y H and Wu K 2005 Commun. Theor.Phys. 44 415 [5] Ishimori Y 1984 Prog. Theor. Phys. 72 33 [6] Myrzakulov R, Nugmanova G N and Syzdykova R N 1998 J.Phys. A: Math. Gen. 31 9535 [7] Zhai Y, Albeverio S, Zhao W Z and Wu K 2006 J. Phys.A: Math. Gen. 39 2117 [8] Myrzakulov R, Vijayalakshmi S, Syzdykova R N andLakshmanan M 1998 J. Math. Phys. 39 2122 [9] Hirota R 1971 Phys. Rev. Lett. 27 1192 [10] Yang J R and Mao J J 2008 Chin. Phys. Lett. 25 1527 [11] Xu X G, Meng X H and Gao Y T 2008 Chin. Phys. Lett. 25 3890 [12] Zhao S L, Zhang D J and Chen D Y 2009 Chin. Phys.Lett. 26 030202 [13] You F C, Zhang J and Hao H H 2009 Chin. Phys. Lett. 26 090201