摘要Semi-insulating GaN is grown by using a two-step AlN buffer layer by metalorganic chemical vapour deposition. The sheet resistance of as-grown semi-insulating GaN is dramatically increased to 1013Ω/sq by using two-step AlN buffer instead of the traditional low-temperature GaN buffer. The high sheet resistance of as-grown GaN over 1013Ω/sq is due to inserting an insulating buffer layer (two-step AlN buffer) between the high-temperature GaN layer and a sapphire substrate which blocks diffusion of oxygen and overcomes the weakness of generating high density carrier near interface of GaN and sapphire when a low-temperature GaN buffer is used. The result suggests that the high conductive feature of unintentionally doped GaN is mainly contributed from the highly conductive channel near interface between GaN and the sapphire substrate, which is indirectly manifested by room-temperature photoluminescence excited by an incident laser beam radiating on growth surface and on the substrate. The functions of the two-step AlN buffer layer in reducing screw dislocation and improving crystal quality of GaN are also discussed.
Abstract:Semi-insulating GaN is grown by using a two-step AlN buffer layer by metalorganic chemical vapour deposition. The sheet resistance of as-grown semi-insulating GaN is dramatically increased to 1013Ω/sq by using two-step AlN buffer instead of the traditional low-temperature GaN buffer. The high sheet resistance of as-grown GaN over 1013Ω/sq is due to inserting an insulating buffer layer (two-step AlN buffer) between the high-temperature GaN layer and a sapphire substrate which blocks diffusion of oxygen and overcomes the weakness of generating high density carrier near interface of GaN and sapphire when a low-temperature GaN buffer is used. The result suggests that the high conductive feature of unintentionally doped GaN is mainly contributed from the highly conductive channel near interface between GaN and the sapphire substrate, which is indirectly manifested by room-temperature photoluminescence excited by an incident laser beam radiating on growth surface and on the substrate. The functions of the two-step AlN buffer layer in reducing screw dislocation and improving crystal quality of GaN are also discussed.
[1] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, SchaW J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W andHilsenbeck J 1999 J. Appl. Phys. 85 3222 [2] Hubbard S M, Zhao G, Pavlidis D, Sutton W and Cho E 2005 J. Cryst. Growth 284 297 [3] Wetzel C, Suski T, Ager J W, Weber E R, Haller E E, Fisher S, MeyerB K, Molnar R J and Perlin P 1997 Phys. Rev. Lett. 78 3923 [4] Look D C and Molnar R J 1997 Appl. Phys. Lett. 70 3377 [5] Bougrioua Z, Moerman I, Nistor L, Van Daele B, Monroy E, PalaciosT, Calle F and Leroux M 2003 Phys. Status Solidi A 195 93 [6] Bougriouaa Z, Moermana I, Sharma N, Wallis R H, Cheyns J, Jacobs K,Thrush E J, Considine L, Beanland R, Farvacque J L and Humphreys C 2001 J. Crystal Growth 230 573 [7] Look D C, Reynolds D C, Jones R L, Kim W, Aktas O, Botchkarev A,Salvador A and Morkoc H 1997 Mater. Sci. Engin. B 44 423 [8] Lee J, Lee M, Hahm S, Lee Y, Lee J, Bae Y and Cho H 2003 MRS Int.J. Nitride Semicond. Res. 8 5 [9] Wickenden A E, Koleske D D, Henry R L, Twigg M E and Fatemi M 2004 J. Cryst. Growth. 260 54 [10] Heikman S, Keller S, DenBaars S P and Mishra U K 2002 Appl. Phys. Lett. 81 439 [11] Polyakov A Y, Smirnov N B, Govorkov A V and Pearton S J 2004 J.Vac. Sci. Technol. B 22 120 [12] Yu H B, Caliskan D and Ozbay E 2006 J. Appl. Phys. 100 033501 [13] Yu Hongbo, Kemal Ozturk M, Ozcelik Suleyman and Ozbay Ekmel 2006 J. Crystal Growth 293 273 [14] Wu Y, Halon A, Kaeding J F, Shama R, Fini P T, Nakamura S andSpeck J S 2004 Appl. Phys. Lett. 84 912 [15] Shibata T, Asai K, Sumiya S, Mouri M, Tanaka M, Oda O, KatsukawaH, Miyake H and Hiramatsu K 2003 Phys. Status Solidi C 0 2023 [16] Paduano Q and Weyburne D 2003 Jpn. J. Appl. Phys. 42 1590 [17] Ohba Y, Sato R and Kaneko K 2001 Jpn. J. Appl. Phys. 40L1293 [18] Kida Y et al 2002 Phys. Status Solidi A 194 498 [19] Sakai M, Ishikawa H, Egawa T, Jimbo T, Umeno M, Shibata T, Asai K,Sumiya S, Kuraoka Y, Tanaka M and O O 2002 J. Cryst. Growth 244 6 [20] S Nakamura 1991 Jpn. J. Appl. Phys. 30 L1705 [21] Cheong G et al 2000 Appl. Phys. Lett. 77 2557 [22] Kim K S, Cheong M G, Cho H K, Suh E K and Leea H J 2002 Appl.Phys. Lett. 80 799 [23] Bottcher T et al%, Einfeldt S, Figge S, Chierchia R, Heinke H, Hommel D and Speck J S2001 Appl. Phys. Lett. 78 1976 [24] Heying B et al%, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P and Speck J S1996 Appl. Phys. Lett. 68 643 [25] Cho H K, Kim K S, Hong C H and Lee H J 2001 J. Cryst. Growth 223 38 [26] Brazel E G, Chin M A and Narayanamurti V 1999 Appl.Phys. Lett. 74 2367 [27] Simpkins B S, Yu E T, Waltereit P and Speck J S 2003 J. Appl.Phys. 94 1448 [28] Weimann N G et al %, Eastman L F, Doppalapudi D, Ng H M and%Moustakas T D1998 J. Appl. Phys. 83 3656 [29] Baia J et al %, Wanga T, Parbrooka P J, Rossa I M and Cullis A G2006 J. Crystal Growth 289 63