Compression Behaviour of Bulk Metallic Glasses and Binary Amorphous Alloy
LI Gong1, LIU Jing2, LIU Ri-Ping1
1Key Lab Metastable Material Science and Technology, Qinhuangdao 066004 2BSRF, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039
Compression Behaviour of Bulk Metallic Glasses and Binary Amorphous Alloy
LI Gong1;LIU Jing2;LIU Ri-Ping1
1Key Lab Metastable Material Science and Technology, Qinhuangdao 066004 2BSRF, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039
摘要The compression properties of Zr41Ti14Cu12.5Ni10Be22.5, Zr44.4Nb7Cu13.5Ni10.8Be24.3 bulk metallic glasses and Ni77P23 binary amorphous alloy are investigated at room temperature up to 24GPa, 39GPa and 30.5GPa, respectively, using in-situ high pressure energy dispersive x-ray diffraction with a synchrotron radiation source. The pressure--volume relationship of Ni77P23 amorphous alloy is consistent well with the second order Birch--Murnaghan (B-M) equation within the experimental pressure range. However, under higher pressure, the experimental data of Zr-based specimens deviate from the B-M equation. Compare to the binary amorphous alloy, less excess free volume existing in the bulk metallic glass and multi-component atomic configuration results in a two-stage relationship between compressibility and pressure.
Abstract:The compression properties of Zr41Ti14Cu12.5Ni10Be22.5, Zr44.4Nb7Cu13.5Ni10.8Be24.3 bulk metallic glasses and Ni77P23 binary amorphous alloy are investigated at room temperature up to 24GPa, 39GPa and 30.5GPa, respectively, using in-situ high pressure energy dispersive x-ray diffraction with a synchrotron radiation source. The pressure--volume relationship of Ni77P23 amorphous alloy is consistent well with the second order Birch--Murnaghan (B-M) equation within the experimental pressure range. However, under higher pressure, the experimental data of Zr-based specimens deviate from the B-M equation. Compare to the binary amorphous alloy, less excess free volume existing in the bulk metallic glass and multi-component atomic configuration results in a two-stage relationship between compressibility and pressure.
LI Gong;LIU Jing;LIU Ri-Ping. Compression Behaviour of Bulk Metallic Glasses and Binary Amorphous Alloy[J]. 中国物理快报, 2007, 24(8): 2323-2326.
LI Gong, LIU Jing, LIU Ri-Ping. Compression Behaviour of Bulk Metallic Glasses and Binary Amorphous Alloy. Chin. Phys. Lett., 2007, 24(8): 2323-2326.
[1] Brenner A et al 1950 J. Res. Natl. Bur. Stand. 44 109 [2] Nishiyama N and Inoue A 1996 Mater. Trans. JIM 37 181 [3] Meyer A et al 1996 Europhys. Lett. 36 379 [4] Herlach D M 1994 Mater. Sci. Engin. R 12 177 [5] Li G et al 2002 J. Mater. Res. 17 1877 [6] Chen H S 1980 Rep. Prog. Phys. 43 353 [7] Greer A L 1984 J. Non-Cryst. Solids 61\&62 737 [8] J\"ackle J 1986 Rep. Prog. Phys. 49 171 [9] Inoue A 1999 Mater. Sci. Engin. A 267 171 [10] Spaepen F 1975 Acta Metall. 23 729 [11] Bridgman P W 1931 The Physics of High Pressure (London:Bell) chap VI p 214 [12] Bukowinski M S T and Knopoff L 1977 High-Pressure Researched Manghnani M H and Akimoto S (New York: Academic) p 367 [13] Li G et al 2007 J. Non-Cryst. Solid (in press) [14]Jiang J Z et al 2000 Appl. Phys. Lett. 77 3553 [15]Wang L M et al 2001 Philos. Mag. Lett. 81 419 [16]Li G et al 2004 Chin. Phys. Lett. 21 898 [17]Sun L L et al 2003 Phys. Rev. B 68 052302 [18]Wang W H et al 2004 Acta Mater. 52 715 [19]Li G et al 2005 Sci. Chin. G 35 241 [20]Murnaghan F D 1951 Finite Deformation of an Elastic Solid(New York: Wiley) chap 4 p 456 [21]Cohen M H and Turnbull D J 1959 J. Chen. Phys. 31 1164 [22]Marc H et al 2005 J. Appl. Phys. 97 033506 [23]Wang W K et al 1980 J. Mater. Sci. 15 2701 [24] Schreiber D 1973 Elastic Constants and TheirMeasurement (New York: McGraw-Hill) p 844