摘要Depth sensing indentation (DSI) tests at the range of 200--1800mN are performed on porous sialon ceramic to determine the indentation load on Young's modulus and hardness values. The Young modulus and hardness (Dynamic and Martens) values are deduced by analysing the unloading segments of the DSI test load-displacement curves using the Oliver--Pharr method. It is found that Young's modulus Er, the dynamic hardness HD and the Martens hardness HM exhibit significant indentation load dependences. The values of Young's modulus and hardness decrease with the increasing indentation load, as a result of indentation load effect. The experimental hf/hm ratios lower than the critical value 0.7, with hm being the maximum penetration depth during loading and hf the final unloading depth, indicate that our sample shows the work hardening behaviour.
Abstract:Depth sensing indentation (DSI) tests at the range of 200--1800mN are performed on porous sialon ceramic to determine the indentation load on Young's modulus and hardness values. The Young modulus and hardness (Dynamic and Martens) values are deduced by analysing the unloading segments of the DSI test load-displacement curves using the Oliver--Pharr method. It is found that Young's modulus Er, the dynamic hardness HD and the Martens hardness HM exhibit significant indentation load dependences. The values of Young's modulus and hardness decrease with the increasing indentation load, as a result of indentation load effect. The experimental hf/hm ratios lower than the critical value 0.7, with hm being the maximum penetration depth during loading and hf the final unloading depth, indicate that our sample shows the work hardening behaviour.
Osman SAHIN. Indentation Load Effect on Young's Modulus and Hardness of Porous Sialon Ceramic by Depth Sensing Indentation Tests[J]. 中国物理快报, 2007, 24(11): 3206-3209.
Osman SAHIN. Indentation Load Effect on Young's Modulus and Hardness of Porous Sialon Ceramic by Depth Sensing Indentation Tests. Chin. Phys. Lett., 2007, 24(11): 3206-3209.
[1] Jack K H 1976 Mater. Sci. 11 1135 [2] Ziegler G, Heinrich J and W\"otting G 1987 J. Mater.Sci. 22 3041 [3] Riley F L 1985 Sprechsaal. 118 225 [4] Greil P and Weiss J 1982 J. Mat. Sci. 17 1571 [5] \c Sahin O, Uzun O, K\"olemen U and U\c car N 2007 MaterialsCharac. (in press) doi:10.1016/j.matchar.2007.02.016 [6] Oliver W C and Pharr G M 1992 J. Mater. Res. 7 1564 [7] Torres F, Benino Y, Fujiwara T and Komatsu T 2004 Mater.Res. Bull. 39 1431 [8] Gong J and Li Y 2000 J. Mater. Sci. 35 209 [9] Galusek D, Riley F L and Riedel R 2001 J. Am. Ceram.Soc. 84 1164 [10] Uzun O, K\"olemen U, \c Celebi S and G\"u\c cl\"u N 2005 J. Eur. Ceram. Soc. 25 969 [11] Quinn J B and Quinn G D 1997 J. Mater. Sci. 32 4331 [12] Li H and Bradt R C 1993 J. Mater. Sci. 28 917 [13] Zeng K, S\"oderlund E, Giannakopoulos A E and Rowcliffe D J 1996 Acta Mater. 44 1127 [14] Bolshakov A and Pharr G M 1998 J. Mater. Res. 13 1049 [15] Zong Z and Soboyejo W 2005 Mater. Sci. Eng. A 404 281 [16] Gong J, Zhao Z, Guan Z and Miao H 2000 J. Eur. Ceram.Soc. 20 1895 [17] Sangwall K, Surowska B and Blaziak P 2002 Mater. Chem.Phys. 77 511 [18] Sangwall K, Surowska B and Blaziak P 2003 Mater. Chem.Phys. 80 428 [19] \c Sahin O, Uzun O, K\"olemen U and U\c car N 2007 J.Phys.: Condens. Matter 19 306001 [20] \c Sahin O, Uzun O, K\"olemen U and U\c car N 2007 Mater. Charac. (in press) doi:10.1016/j.matchar.2007.06.005 [21] Yurkov A L, Jhuravleva N V and Lukin E S 1994 J. MaterSci. 29 6551