Pressure-Induced Superconductivity in Flat-Band Kagome Compounds Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$
Shuo Li1,2†, Shuo Han2†, Shaohua Yan2†, Yi Cui2, Le Wang2, Shanmin Wang3, Shanshan Chen2, Hechang Lei2*, Feng Yuan4*, Jinshan Zhang1*, and Weiqiang Yu2*
1Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China 2Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China 3Department of Physics, Southern University of Science & Technology, Shenzhen 518055, China 4College of Physics, Qingdao University, Qingdao 266071, China
Abstract:We performed high-pressure transport studies on the flat-band Kagome compounds, Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$ ($x=0$, 0.25), with a diamond anvil cell. For both compounds, the resistivity exhibits an insulating behavior with pressure up to 17 GPa. With pressure above 20 GPa, a metallic behavior is observed at high temperatures in Pd$_3$P$_2$S$_8$, and superconductivity emerges at low temperatures. The onset temperature of superconducting transition $T_{\rm C}$ rises monotonically from 2 K to 4.8 K and does not saturate with pressure up to 43 GPa. For the Se-doped compound Pd$_3$P$_2$(S$_{0.75}$Se$_{0.25}$)$_8$, the $T_{\rm C}$ is about 1.5 K higher than that of the undoped one over the whole pressure range, and reaches 6.4 K at 43 GPa. The upper critical field with field applied along the $c$ axis at typical pressures is about 50$\%$ of the Pauli limit, suggesting a 3D superconductivity. The Hall coefficient in the metallic phase is low and exhibits a peaked behavior at about 30 K, which suggests either a multi-band electronic structure or an electron correlation effect in the system.
Wei Y, Ma X Y, Feng Z L, Zhang Y C, Zhang L, Yang H X, Qi Y, Meng Z Y, Wang Y C, Shi Y G, and Li S L 2021 Chin. Phys. Lett.38 097501
[6]
Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L M, Zhang S B, Guo T F, Lu Q Y, Cho J H, Zeng C G, and Zhang Z Y 2018 Phys. Rev. Lett.121 096401
[7]
Yin J X, Zhang S T, Chang G Q, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H B, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z Q, Neupert T, Jia S, Lei H C, and Hasan M Z 2019 Nat. Phys.15 443
[8]
Kang M G, Ye L D, Fang S A, You J S, Levitan A, Han M Y, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad G M, Checkelsky J G, and Comin R 2020 Nat. Mater.19 163
[9]
Kang M G, Fang S A, Ye L D, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G, and Comin R 2020 Nat. Commun.11 4004
[10]
Liu Z H, Li M, Wang Q, Wang G W, Wen C H P, Jiang K, Lu X L, Yan S C, Huang Y B, Shen D W, Yin J X, Wang Z Q, Yin Z P, Lei H C, and Wang S C 2020 Nat. Commun.11 4002
[11]
Li M, Wang Q, Wang G W, Yuan Z H, Song W H, Lou R, Liu Z T, Huang Y B, Liu Z H, Lei H C, Yin Z P, and Wang S C 2021 Nat. Commun.12 3129
[12]
Han M Y, Inoue H, Fang S A, John C, Ye L D, Chan M K, Graf D, Suzuki T, Ghimire M P, Cho W J, Kaxiras E, and Checkelsky J G 2021 Nat. Commun.12 5345
[13]
Ye L D, Fang S A, Kang M G, Kaufmann J, Lee Y H, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Bell D C, Janson O, Comin R, and Checkelsky J G 2021 arXiv:2106.10824 [cond-mat.mtrl-sci]
[14]
Park S, Kang S, Kim H, Lee K H, Kim P, Sim S, Lee N, Karuppannan B, Kim J, Kim J, Sim K I, Coak M J, Noda Y, Park C H, Kim J H, and Park J G 2020 Sci. Rep.10 20998
[15]
Yan S H, Gong B C, Wang L, Wu J Z, Yin Q W, Cao X Y, Zhang X, Liu X F, Lu Z Y, Liu K, and Lei H C 2022 Phys. Rev. B105 155115
[16]
Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, and Felser C 2018 Nat. Phys.14 1125
[17]
Ye L D, Kang M G, Liu J W, Von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, and Checkelsky J G 2018 Nature555 638
Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P, and Cheng J G 2021 Phys. Rev. Lett.126 247001
[20]
Nie L P, Sun K L, Ma W R, Song D W, Zheng L X, Liang Z W, Wu P, Yu F H, Li J, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Liu K, Xiang Z J, Ying J J, Wang Z Y, Wu T, and Chen X H 2022 Nature604 59
Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z Y W, Wang N N, Sun J P, Zhao Z, Li D, Liu S B, Zhang H, Chen H, Jin K, Cheng J G, Yu L, Zhou F, Dong X L, Hu J P, Gao H J, and Zhao Z X 2021 Chin. Phys. Lett.38 057403
Cao Y, Fatemi V, Demir A, Fang S A, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, and Jarillo-Herrero P 2018 Nature556 80
[31]
Cao Y, Fatemi V, Fang S A, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature556 43
[32]
Li Z, Zhuang J, Wang L, Feng H, Gao Q, Xu X, Hao W, Wang X, Zhang C, Wu K, Dou S X, Chen L, Hu Z, and Du Y 2018 Sci. Adv.4 eaau4511
[33]
Wang L, Shih E M, Ghiotto A, Xian L D, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B H, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N, and Dean C R 2020 Nat. Mater.19 861
Zhou Y, He X Y, Wang S Y, Wang J, Chen X L, Zhou Y H, An C, Zhang M, Zhang Z T, and Yang Z R 2022 arXiv:2203.16943 [cond-mat.supr-con]
[43]
Wang Q, Qiu X L, Pei C Y, Gong B C, Gao L L, Zhao Y, Cao W Z, Li C H, Zhu S H, Zhang M X, Chen Y L, Liu K, and Qi Y P 2022 arXiv:2204.05179 [cond-mat.supr-con]