Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals
Yu Dong1,2,3†, Yangyang Lv1,2,3†, Zuyu Xu1,2,3†, M. Abdel-Hafiez4,5, A. N. Vasiliev4,6, Haipeng Zhu7, Junfeng Wang7, Liang Li7, Wanghao Tian1,2,3, Wei Chen1,2,3, Song Bao1,2,3, Jinghui Wang1,2,3,8, Yueshen Wu8, Yulong Huang9, Shiliang Li9, Jie Yuan9, Kui Jin9, Labao Zhang1, Huabing Wang1, Shun-Li Yu1,2,3*, Jinsheng Wen1,2,3*, Jian-Xin Li1,2,3, Jun Li8,1*, and Peiheng Wu1,10
1School of Electronic Science and Engineering & School of Physics, Nanjing University, Nanjing 210093, China 2National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China 3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 4National University of Science and Technology (MISiS), Moscow 119049, Russia 5Department of Physics and Astronomy, Box 516, Uppsala University, Uppsala SE-75120, Sweden 6Moscow State University, Moscow 119991, Russia 7Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China 8ShanghaiTech Laboratory for Topological Physics & School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 9Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 10Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract:In iron-based superconductors, the ($0, \pi$) or ($\pi, 0$) nematicity, which describes an electronic anisotropy with a four-fold symmetry breaking, is well established and believed to be important for understanding the superconducting mechanism. However, how exactly such a nematic order observed in the normal state can be related to the superconducting pairing is still elusive. Here, by performing angular-dependent in-plane magnetoresistivity using ultra-thin flakes in the steep superconducting transition region, we unveil a nematic superconducting order along the ($\pi, \pi$) direction in electron-doped BaFe$_{2-x}$Ni$_x$As$_2$ from under-doped to heavily overdoped regimes with $x=0.065$–0.18. It shows superconducting gap maxima along the ($\pi, \pi$) direction rotated by 45$^\circ$ from the nematicity along ($0, \pi$) or ($\pi, 0$) direction observed in the normal state. A similar ($\pi, \pi$)-type nematicity is also observed in the under-doped and optimally doped hole-type Ba$_{1-y}$K$_y$Fe$_2$As$_2$, with $y = 0.2$–0.5. These results suggest that the ($\pi, \pi$) nematic superconducting order is a universal feature that needs to be taken into account in the superconducting pairing mechanism in iron-based superconductors.
Luo H, Lu X, Zhang R, Wang M, Goremychkin E A, Adroja D T, Danilkin S, Deng G, Yamani Z, and Dai P 2013 Phys. Rev. B88 144516
[11]
Prozorov R, Kończykowski M, Tanatar M A, Wen H H, Fernandes R M, and Canfield P C 2019 npj Quantum Mater.4 34
[12]
Zhao J, Rotundu C R, Marty K, Matsuda M, Zhao Y, Setty C, Bourret-Courchesne E, Hu J, and Birgeneau R J 2013 Phys. Rev. Lett.110 147003
[13]
Cai Y, Xie T, Yang H, Wu D, Huang J, Hong W, Cao L, Liu C, Li C, Xu Y, Gao Q, Miao T, Liu G, Li S, Huang L, Luo H, Xu Z, Gao H, Zhao L, and Zhou X J 2021 Chin. Phys. Lett.38 057404
Chuang T M, Allan M P, Lee J, Xie Y, Ni N, Bud'ko S L, Boebinger G S, Canfield P C, and Davis J C 2010 Science327 181
[17]
Chu J H, Analytis J G, De Greve K, McMahon P L, Islam Z, Yamamoto Y, and Fisher I R 2010 Science329 824
[18]
Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X, and Xue Q K 2011 Science332 1410
Kuo H H, Chu J H, Palmstrom J C, Kivelson S A, and Fisher I R 2016 Science352 958
[22]
Liu Z, Gu Y, Zhang W, Gong D, Zhang W, Xie T, Lu X, Ma X, Zhang X, Zhang R, Zhu J, Ren C, Shan L, Qiu X, Dai P, Yang Y F, Luo H, and Li S 2016 Phys. Rev. Lett.117 157002
[23]
Tanatar M A, Bohmer A E, Timmons E I, Schutt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud'ko S L, Canfield P C, Fernandes R M, and Prozorov R 2016 Phys. Rev. Lett.117 127001
Ying J J, Wang X F, Wu T, Xiang Z J, Liu R H, Yan Y J, Wang A F, Zhang M, Ye G J, Cheng P, Hu J P, and Chen X H 2011 Phys. Rev. Lett.107 067001
[26]
Allan M P, Chuang T M, Massee F, Xie Y, Ni N, Bud'ko S L, Boebinger G S, Wang Q, Dessau D S, Canfield P C, Golden M S, and Davis J C 2013 Nat. Phys.9 220
[27]
Sprau P O, Kostin A, Kreisel A, Bohmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M, and Davis J C S 2017 Science357 75
[28]
Hanaguri T, Iwaya K, Kohsaka Y, Machida T, Watashige T, Kasahara S, Shibauchi T, and Matsuda Y 2018 Sci. Adv.4 eaar6419
[29]
Singh U R, White S C, Schmaus S, Tsurkan V, Loidl A, Deisenhofer J, and Wahl P 2015 Sci. Adv.1 e1500206
Man H R, Guo J G, Zhang R, Schonemann R, Yin Z P, Fu M X, Stone M B, Huang Q Z, Song Y, Wang W Y, Singh D J, Lochner F, Hickel T, Eremin I, Harriger L, Lynn J W, Broholm C, Balicas L, Si Q M, and Dai P C 2017 npj Quantum Mater.2 14
[35]
Lu X Y, Park J T, Zhang R, Luo H Q, Nevidomskyy A H, Si Q M, and Dai P C 2014 Science345 657
[36]
Wang Q S, Shen Y, Pan B Y, Hao Y Q, Ma M W, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X J, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H B, and Zhao J 2016 Nat. Mater.15 159
[37]
Wang W Y, Song Y, Cao C D, Tseng K F, Keller T, Li Y, Harriger L W, Tian W, Chi S X, Yu R, Nevidomskyy A H, and Dai P C 2018 Nat. Commun.9 3128
Yi M, Lu D H, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R, and Shen Z X 2011 Proc. Natl. Acad. Sci. USA108 6878
[40]
Yi M, Lu D H, Yu R, Riggs S C, Chu J H, Lv B, Liu Z K, Lu M, Cui Y T, Hashimoto M, Mo S K, Hussain Z, Chu C W, Fisher I R, Si Q, and Shen Z X 2013 Phys. Rev. Lett.110 067003
[41]
Liu D, Li C, Huang J, Lei B, Wang L, Wu X, Shen B, Gao Q, Zhang Y, Liu X, Hu Y, Xu Y, Liang A, Liu J, Ai P, Zhao L, He S, Yu L, Liu G, Mao Y, Dong X, Jia X, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Shi Y, Hu J, Xiang T, Chen X, Xu Z, Chen C, and Zhou X J 2018 Phys. Rev. X8 031033
[42]
Hashimoto T, Ota Y, Yamamoto H Q, Suzuki Y, Shimojima T, Watanabe S, Chen C, Kasahara S, Matsuda Y, Shibauchi T, Okazaki K, and Shin S 2018 Nat. Commun.9 282
Gallais Y, Fernandes R M, Paul I, Chauvière L, Yang Y X, Méasson M A, Cazayous M, Sacuto A, Colson D, and Forget A 2013 Phys. Rev. Lett.111 267001
[47]
Massat P, Quan Y, Grasset R, Méasson M A, Cazayous M, Sacuto A, Karlsson S, Strobel P, Toulemonde P, Yin Z, and Gallais Y 2018 Phys. Rev. Lett.121 077001
Kasahara S, Shi H J, Hashimoto K, Tonegawa S, Mizukami Y, Shibauchi T, Sugimoto K, Fukuda T, Terashima T, Nevidomskyy A H, and Matsuda Y 2012 Nature486 382
Frandsen B A, Taddei K M, Yi M, Frano A, Guguchia Z, Yu R, Si Q M, Bugaris D E, Stadel R, Osborn R, Rosenkranz S, Chmaissem O, and Birgeneau R J 2017 Phys. Rev. Lett.119 187001
Li J, Pereira P J, Yuan J, Lv Y Y, Jiang M P, Lu D C, Lin Z Q, Liu Y J, Wang J F, Li L, Ke X X, Van Tendeloo G, Li M Y, Feng H L, Hatano T, Wang H B, Wu P H, Yamaura K, Takayama-Muromachi E, Vanacken J, Chibotaru L F, and Moshchalkov V V 2017 Nat. Commun.8 1880
[69]
Liu X, Tao R, Ren M Q, Chen W, Yao Q, Wolf T, Yan Y J, Zhang T, and Feng D L 2019 Nat. Commun.10 1039
[70]
Ishida K, Tsujii M, Hosoi S, Mizukami Y, Ishida S, Iyo A, Eisaki H, Wolf T, Grube K, Loeneysen H V, Fernandes R M, and Shibauchi T 2020 Proc. Natl. Acad. Sci. USA117 6424
[71]
Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M, Qian B, Vehstedt E K, Yang J, Pham H M, Spinu L, and Mao Z Q 2009 Phys. Rev. Lett.102 247001
[72]
Li S, de la C C, Huang Q, Chen Y, Lynn J W, Hu J, Huang Y L, Hsu F C, Yeh K W, Wu M K, and Dai P 2009 Phys. Rev. B79 054503
[73]
Okazaki K, Ota Y, Kotani Y, Malaeb W, Ishida Y, Shimojima T, Kiss T, Watanabe S, Chen C T, Kihou K, Lee C H, Iyo A, Eisaki H, Saito T, Fukazawa H, Kohori Y, Hashimoto K, Shibauchi T, Matsuda Y, Ikeda H, Miyahara H, Arita R, Chainani A, and Shin S 2012 Science337 1314
[74]
Sato T, Nakayama K, Sekiba Y, Richard P, Xu Y M, Souma S, Takahashi T, Chen G F, Luo J L, Wang N L, and Ding H 2009 Phys. Rev. Lett.103 047002
[75]
Yoshida T, Nishi I, Fujimori A, Yi M, Moore R G, Lu D H, Shen Z X, Kihou K, Shirage P M, Kito H, Lee C H, Iyo A, Eisaki H, and Harima H 2011 J. Phys. Chem. Solids72 465
[76]
Abdel-Hafiez M, Zhang Y, He Z, Zhao J, Bergmann C, Krellner C, Duan C G, Lu X, Luo H, Dai P, and Chen X J 2015 Phys. Rev. B91 024510
[77]
Li J, Yuan J, Yuan Y H, Ge J Y, Li M Y, Feng H L, Pereira P J, Ishii A, Hatano T, Silhanek A V, Chibotaru L F, Vanacken J, Yamaura K, Wang H B, Takayama-Muromachi E, and Moshchalkov V V 2013 Appl. Phys. Lett.103 062603
[78]
Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud'ko S L, Canfield P C, and Hannahs S T 2010 Phys. Rev. B82 024519
Gretarsson H, Lupascu A, Kim J, Casa D, Gog T, Wu W, Julian S R, Xu Z J, Wen J S, Gu G D, Yuan R H, Chen Z G, Wang N L, Khim S, Kim K H, Ishikado M, Jarrige I, Shamoto S, Chu J H, Fisher I R, and Kim Y J 2011 Phys. Rev. B84 100509
Xu Z, Dai G, Li Y, Yin Z, Rong Y, Tian L, Liu P, Wang H, Xing L, Wei Y, Kajimoto R, Ikeuchi K, Abernathy D L, Wang X, Jin C, Lu X, Tan G, and Dai P 2020 npj Quantum Mater.5 11