CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Chiral Pair Density Waves with Residual Fermi Arcs in RbV$_{3}$Sb$_{5}$ |
Xiao-Yu Yan1†, Hanbin Deng1†, Tianyu Yang1†, Guowei Liu1, Wei Song1, Hu Miao2, Zhijun Tu3,4 Hechang Lei3,4, Shuo Wang5,6, Ben-Chuan Lin5,6, Hailang Qin7*, and Jia-Xin Yin1,7* |
1Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China 2Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 3Beijing Key Laboratory of Optoelectronic Functional Materials MicroNano Devices, Department of Physics, Renmin University of China, Beijing 100872, China 4Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China 5Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 6Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 7Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen 518055, China
|
|
Cite this article: |
Xiao-Yu Yan, Hanbin Deng, Tianyu Yang et al 2024 Chin. Phys. Lett. 41 097401 |
|
|
Abstract The chiral $2\times 2$ charge order has been reported and confirmed in the kagome superconductor RbV$_{3}$Sb$_{5}$, while its interplay with superconductivity remains elusive owing to its lowest superconducting transition temperature $T_{\scriptscriptstyle{\rm C}}$ of about 0.85 K in the AV$_{3}$Sb$_{5}$ family (A = K, Rb, Cs) that severely challenges electronic spectroscopic probes. Here, utilizing dilution-refrigerator-based scanning tunneling microscopy down to 30 mK, we observe chiral $2\times 2$ pair density waves with residual Fermi arcs in RbV$_{3}$Sb$_{5}$. We find a superconducting gap of 150 µeV with substantial residual in-gap states. The spatial distribution of this gap exhibits chiral $2\times 2$ modulations, signaling a chiral pair density wave (PDW). Our quasi-particle interference imaging of the zero-energy residual states further reveals arc-like patterns. We discuss the relation of the gap modulations with the residual Fermi arcs under the space-momentum correspondence between PDW and Bogoliubov Fermi states.
|
|
Received: 16 July 2024
Express Letter
Published: 13 August 2024
|
|
PACS: |
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
|
|
|
[1] | Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, and Lei H C 2021 Chin. Phys. Lett. 38 037403 |
[2] | Wilson S D and Ortiz B R 2024 Nat. Rev. Mater. 9 420 |
[3] | Wang N N, Chen K Y, Yin Q W et al. 2021 Phys. Rev. Res. 3 043018 |
[4] | Du F, Luo S S, Li R, Ortiz B R, Chen Y, Wilson S D, Song Y, and Yuan H Q 2022 Chin. Phys. B 31 017404 |
[5] | Guguchia Z, Mielke III C, Das D et al. 2023 Nat. Commun. 14 153 |
[6] | Wang S, Fang J Z, Wu Z N et al. 2024 Commun. Phys. 7 15 |
[7] | Wang S, Feng X L, Fang J Z et al. 2024 arXiv:2405.12592 [cond-mat.str-el] |
[8] | Deng H et al. 2024 Nature (accepted) |
[9] | Li H X, Zhang T T, Yilmaz T et al. 2021 Phys. Rev. X 11 031050 |
[10] | Shumiya N, Hossain M S, Yin J X et al. 2021 Phys. Rev. B 104 035131 |
[11] | Xing Y Q, Bae S, Ritz E et al. 2024 Nature 631 60 |
[12] | Agterberg D F, Séamus Davis J C, Edkins S D et al. 2020 Annu. Rev. Condens. Matter Phys. 11 231 |
[13] | Hamidian M H, Edkins S D, Joo S H et al. 2016 Nature 532 343 |
[14] | Du Z Y, Li H, Joo S H et al. 2020 Nature 580 65 |
[15] | Liu X, Chong Y X, Sharma R, and Davis J C S 2021 Science 372 1447 |
[16] | Chen H, Yang H T, Hu B et al. 2021 Nature 599 222 |
[17] | Jin J T, Jiang K, Yao H, and Zhou Y 2022 Phys. Rev. Lett. 129 167001 |
[18] | Wu Y M, Thomale R, and Raghu S 2023 Phys. Rev. B 108 L081117 |
[19] | Mohanta N 2023 Phys. Rev. B 108 L220507 |
[20] | Zhao H, Li H, Ortiz B R et al. 2021 Nature 599 216 |
[21] | Yu J W, Xu Z A, Xiao K B et al. 2022 Nano Lett. 22 918 |
[22] | Wu P, Tu Y B, Wang Z Y et al. 2023 Nat. Phys. 19 1143 |
[23] | Liu Z H, Zhao N N, Yin Q W et al. 2021 Phys. Rev. X 11 041010 |
[24] | Feng X, Jiang K, Wang Z, and Hu J 2021 Sci. Bull. 66 1384 |
[25] | Lin Y P and Nandkishore R M 2021 Phys. Rev. B 104 045122 |
[26] | Park T, Ye M X, and Balents L 2021 Phys. Rev. B 104 035142 |
[27] | Denner M M, Thomale R, and Neupert T 2021 Phys. Rev. Lett. 127 217601 |
[28] | Wang Y J, Yang S Y, Sivakumar P K et al. 2023 Sci. Adv. 9 eadg7269 |
[29] | Ge J, Wang P Y, Xing Y et al. 2024 Phys. Rev. X 14 021025 |
[30] | Le T, Pan Z M, Xu Z K et al. 2024 Nature 630 64 |
[31] | Sharma R, Edkins S D, Wang Z Y et al. 2020 Proc. Natl. Acad. Sci. USA 117 5222 |
[32] | Gu Q Q, Carroll J P, Wang S Q et al. 2023 Nature 618 921 |
[33] | Jiang Z C, Ma H Y, Xia W et al. 2023 Nano Lett. 23 5625 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|