Chin. Phys. Lett.  2024, Vol. 41 Issue (8): 089701    DOI: 10.1088/0256-307X/41/8/089701
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Enrichment of Chemical Element $^{7}$Li in the Rotating Red Clump Star
Fang-Wen Wu1, Han-Feng Song1,2*, Qing-Li Li1, Yun He1, Xin-Yue Qu1, and Zhuo Han1
1College of Physics, Guizhou University, Guiyang 550025, China
2Geneva Observatory, University of Geneva, CH-1290 Sauverny, Switzerland
Cite this article:   
Fang-Wen Wu, Han-Feng Song, Qing-Li Li et al  2024 Chin. Phys. Lett. 41 089701
Download: PDF(515KB)   PDF(mobile)(523KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract About 2 percent of red clump stars are found to be the lithium-rich and thus the surface lithium increases obviously in some red clump stars. The physical mechanism of the lithium enrichment in these stars has not yet been explained satisfactorily by the evolutionary models of single stars. The flash induced internal gravity wave mixing (i.e., IGW) could play a primary role in explaining the red clump star with lithium enrichment and it has a very significant impact on the internal structure and surface compositions of a star. Rotation can significantly increase the mixing efficiency of the internal gravity wave because the timescale for the enrichment event has been enlarged. Thermohaline mixing can explain the observed behavior of lithium on red giant stars that are more luminosity than the RGB bump. However, it has a very small effect on the diffusion of elements because its diffusion coefficient is much smaller than the one of IGW induced mixing after the core helium flash.
Received: 04 June 2024      Published: 27 August 2024
PACS:  97.10.Cv (Stellar structure, interiors, evolution, nucleosynthesis, ages)  
  97.10.Kc (Stellar rotation)  
  97.20.Ec (Main-sequence: early-type stars (O and B))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/8/089701       OR      https://cpl.iphy.ac.cn/Y2024/V41/I8/089701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fang-Wen Wu
Han-Feng Song
Qing-Li Li
Yun He
Xin-Yue Qu
and Zhuo Han
[1] Li Z, Song H F, and Peng W G 2018 Chin. Phys. Lett. 35 079701
[2] Zhang J, Ma R Y, Li H J, Zhang B et al. 2017 Chin. Phys. Lett. 34 049701
[3] Pols O R, Schröder K P, Hurley J R, Tout C A, and Eggleton P P 1998 Mon. Not. R. Astron. Soc. 298 525
[4] Yan H L and Shi J R 2022 Chin. J. Astron. Astrophys. 46 1
[5] Yan H L, Shi J R, Zhou Y T et al. 2018 Nat. Astron. 2 790
[6] Martell S L, Simpson J D, Balasubramaniam A G et al. 2021 Mon. Not. R. Astron. Soc. 505 5340
[7] Yan H L, Zhou Y T, Zhang X F et al. 2021 Nat. Astron. 5 86
[8] Aguilera-Gómez C, Chanamé J, Pinsonneault M H, and Carlberg J K 2016 Astrophys. J. 829 127
[9] Ashwell J F, Jeffries R D, Smalley B et al. 2005 Mon. Not. R. Astron. Soc. 363 L81
[10]Charbonnel C and Balachandran S C 2000 Astron. Astrophys. 359 563
[11] Li X F, Shi J R, Li Y, Yan H L, and Zhang J H 2023 Astrophys. J. 943 115
[12] Paxton B, Bildsten L, Dotter A, Herwig F, Lesaffre P, and Timmes F 2011 Astrophys. J. Suppl. Ser. 192 3
[13] Paxton B, Cantiello M, Arras P et al. 2013 Astrophys. J. Suppl. Ser. 208 4
[14] Paxton B, Marchant P, Schwab J et al. 2015 Astrophys. J. Suppl. Ser. 220 15
[15] Paxton B, Schwab J, Bauer E B et al. 2018 Astrophys. J. Suppl. Ser. 234 34
[16]Böhm-Vitense E et al. 1958 Z. Astrophys. 46 108
[17]Cox and Giuli 1968 Principles of Stellar Structure (New York: Gordon and Breach)
[18] Iglesias C A and Rogers F J 1996 Astrophys. J. 464 943
[19] Endal A S and Sofia S 1978 Astrophys. J. 220 279
[20] Wellstein S, Langer N, and Braun H 2001 Astron. Astrophys. 369 939
[21]Kippenhahn R, Ruschenplatt G, and Thomas H C 1980 Astron. Astrophys. 91 175
[22] Stern M E 1960 Tellus A 12 172
[23] Ulrich R K 1972 Astrophys. J. 172 165
[24]Montalban J 1994 Astron. Astrophys. 281 421
[25]Montalban J and Schatzman E 2000 Astron. Astrophys. 354 943
[26]Montalban J and Schatzman E 1996 Astron. Astrophys. 305 513
[27]Reimers D 1975 Memoires of the Societe Royale des Sciences de Liege 8 369
[28] Moyano F D, Eggenberger P, Mosser B, and Spada F 2023 Astron. Astrophys. 673 A110
[29] Gehan C, Mosser B, Michel E et al. 2018 Astron. Astrophys. 616 A24
[30] Kumar Y B, Reddy B E, Campbell S W, Maben S, Zhao G, and Ting Y S 2020 Nat. Astron. 4 1059
[31] Buder S et al. 2018 Mon. Not. R. Astron. Soc. 478 4513
[32] Buder S, Sharma S, Kos J et al. 2021 Mon. Not. R. Astron. Soc. 506 150
[33]Denissenkov P A and Weiss A 2000 Astron. Astrophys. 358 L49
Related articles from Frontiers Journals
[1] Zhi Li, Han-Feng Song, Wei-Guo Peng. Effect of Tidal Torques on Rotational Mixing in Close Binaries[J]. Chin. Phys. Lett., 2018, 35(7): 089701
[2] Jiang Zhang, Ren-Yi Ma, Hong-Jie Li, Bo Zhang. Nucleosynthesis in Advection-Dominated Accretion Flow onto a Black Hole[J]. Chin. Phys. Lett., 2017, 34(4): 089701
[3] Jiang-Tao Wang, Han-Feng Song. The Pulsation Induced by Mass Transfer in Critically Rotating Stars[J]. Chin. Phys. Lett., 2016, 33(09): 089701
[4] ZHANG Jiang, **, WANG Bo, ZHANG Bo, HAN Zhan-Wen,. Reanalysis of the Isotopic Mixture of Neutron-Capture Elements in the Metal-Poor Star HD 175305[J]. Chin. Phys. Lett., 2012, 29(1): 089701
[5] CUI Dong-Nuan, GENG Yuan-Yuan, CUI Wen-Yuan, ZHANG Bo. Mass Fraction of 13C-Pocket in Metal-Poor AGB Stars and the Primary Nature of Neutron Source[J]. Chin. Phys. Lett., 2009, 26(3): 089701
[6] CUI Wen-Yuan, , CUI Dong-Nuan, DU Yun-Shuang, ZHANG Bo,. Neutron-Capture Elements in the Double-Enhanced Star HE 1305-0007: a New s- and r-Process Paradigm[J]. Chin. Phys. Lett., 2007, 24(5): 089701
[7] ZHANG Feng-Hui, HAN Zhan-Wen, LI Li-Fang. Effect of the Initial Mass Function of Primaries on Binary Stellar Populations[J]. Chin. Phys. Lett., 2005, 22(4): 089701
[8] SONG Han-Feng, ZHANG Bo, ZHANG Jiang, WU Hai-Bin, PENG Qiu-He. R-Process Nucleosynthesis and Galactic Chemical Evolution of the Ba Peak Elements[J]. Chin. Phys. Lett., 2003, 20(11): 089701
[9] WANG Fei-Lu, ZHAO Gang, YUAN Jian-Min,. Density Dependence of the Detailed Spectral Line Effects on the Opacity of Astrophysical Abundant Elements: Oxygen[J]. Chin. Phys. Lett., 2003, 20(10): 089701
[10] ZHANG Miao-Jing, , ZHANG Bo, , LI Guang-Lie,. Abundance Distribution of Slow-Process Main Heavy Elements in AGB Stars[J]. Chin. Phys. Lett., 2003, 20(6): 089701
[11] ZHANG Feng-Hui, HAN Zhan-Wen, LI Li-Fang, Jarrod R. Hurley. Evolutionary Population Synthesis for Single Stellar Populations[J]. Chin. Phys. Lett., 2002, 19(11): 089701
[12] PENG Qiuhe. Are Massive Main Sequence Stars and Wolf-Rayet Stars Detectable Sources of the Intersteller Medium 26A1? [J]. Chin. Phys. Lett., 1994, 11(8): 089701
Viewed
Full text


Abstract