Chin. Phys. Lett.  2024, Vol. 41 Issue (8): 086801    DOI: 10.1088/0256-307X/41/8/086801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Quantum Tunneling Enhanced Hydrogen Desorption from Graphene Surface: Atomic versus Molecular Mechanism
Yangwu Tong1,2 and Yong Yang1,2*
1Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
2Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Cite this article:   
Yangwu Tong and Yong Yang 2024 Chin. Phys. Lett. 41 086801
Download: PDF(2020KB)   PDF(mobile)(2559KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the desorption mechanism of hydrogen isotopes from graphene surface using first-principles calculations, with focus on the effects of quantum tunneling. At low temperatures, quantum tunneling plays a dominant role in the desorption process of both hydrogen monomers and dimers. In the case of dimer desorption, two types of mechanisms, namely the traditional one-step desorption in the form of molecules (molecular mechanism), and the two-step desorption in the form of individual atoms (atomic mechanism), are studied and compared. For the ortho-dimers, the dominant desorption mechanism is found to switch from the molecular mechanism to the atomic mechanism above a critical temperature, which is $\sim$ 300 K and 200 K for H and D, respectively.
Received: 28 March 2024      Published: 26 August 2024
PACS:  68.43.Vx (Thermal desorption)  
  82.20.Xr (Quantum effects in rate constants (tunneling, resonances, etc.))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  68.90.+g (Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/8/086801       OR      https://cpl.iphy.ac.cn/Y2024/V41/I8/086801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yangwu Tong and Yong Yang
[1] Vidali G 2013 Chem. Rev. 113 8762
[2] Paffett M T, Willms R S, Gentile C A, and Skinner C H 2002 Fusion Sci. Technol. 41 934
[3] Tanabe T, Sugiyama K, Coad P, Bekris N, Glugla M, and Miya N 2005 J. Nucl. Mater. 345 89
[4] Masaki K, Kodama K, Ando T, Saidoh M, Shimizu M, Hayashi T, and Okuno K 1996 Fusion Eng. Des. 31 181
[5] Jawhari A H 2022 Energies 15 9085
[6] Morse J R, Zugell D A, Patterson E, Baldwin J W, and Willauer H D 2021 J. Power Sources 494 229734
[7] He Q F, Zeng L P, Han L H, Sartin M M, Peng J, Li J F, Oleinick A, Svir I, Amatore C, Tian Z Q, and Zhan D P 2021 J. Am. Chem. Soc. 143 18419
[8] Zhao M W, Xia Y Y, Ma Y C, Ying M J, Liu X D, and Mei L M 2002 Chin. Phys. Lett. 19 1498
[9] Sui P F, Zhao Y C, Dai Z H, and Wang W T 2013 Chin. Phys. Lett. 30 107306
[10] Wang X Q, Wang Y S, Wang Y C, Wang F, Sun Q, and Jia Y 2014 Chin. Phys. Lett. 31 026801
[11] Lei S L, Li B, Huang J, Li Q X, and Yang J L 2013 Chin. Phys. Lett. 30 077502
[12] Gao C W, Wang Y Y, Jiang J, Nan H Y, and Ni Z H 2015 Chin. Phys. Lett. 32 058101
[13] Hornekær L, Rauls E, Xu W, Šljivančanin Ž, Otero R, Stensgaard I, Lægsgaard E, Hammer B, and Besenbacher F 2006 Phys. Rev. Lett. 97 186102
[14] González-Herrero H, Cortés-del Río E, Mallet P, Veuillen J Y, Palacios J J, Gómez-Rodríguez J M, Brihuega I, and Ynduráin F 2019 2D Mater. 6 021004
[15] Andree A, Lay M L, Zecho T, and Küpper J 2006 Chem. Phys. Lett. 425 99
[16] Hornekær L, Šljivančanin Ž, Xu W, Otero R, Rauls E, Stensgaard I, Lægsgaard E, Hammer B, and Besenbacher F 2006 Phys. Rev. Lett. 96 156104
[17] Han E X, Fang W, Stamatakis M, Richardson J O, and Chen J 2022 J. Phys. Chem. Lett. 13 3173
[18] Grimme S, Antony J, Ehrlich S, and Krieg H 2010 J. Chem. Phys. 132 154104
[19] Bi C and Yang Y 2021 J. Phys. Chem. C 125 464
[20] Tong Y W and Yang Y 2024 J. Phys. Chem. C 128 840
[21] Bi C, Chen Q, Li W, and Yang Y 2021 Chin. Phys. B 30 046601
[22] Yu X F, Tong Y W, and Yang Y 2023 Chin. Phys. B 32 086801
[23] Yu X F, Tong Y W, and Yang Y 2023 Chin. Phys. B 32 108103
[24] Sha X W and Jackson B 2002 Surf. Sci. 496 318
[25] Lechner C, Baranek P, and Vach H 2018 Carbon 127 437
[26] Henkelman G, Uberuaga B P, and Jónsson H 2000 J. Chem. Phys. 113 9901
[27] Baroni S, de Gironcoli S, Dal Corso A, and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[28] Yang Y and Kawazoe Y 2019 J. Phys. Chem. C 123 13804
[29] Yang Y, Meng S, and Wang E G 2006 J. Phys.: Condens. Matter 18 10165
[30] Liu Y F, Geng H B, Qin X Y, Yang Y, Zeng Z, Chen S M, Lin Y X, Xin H X, Song C J, Zhu X G, Li D, Zhang J, Song L, Dai Z F, and Kawazoe Y 2019 Matter 1 690
[31] Allouche A, Ferro Y, Angot T, Thomas C, and Layet J M 2005 J. Chem. Phys. 123 124701
[32] Zecho T, Güttler A, Sha X W, Jackson B, and Küppers J 2002 J. Chem. Phys. 117 8486
[33] Zecho T, Güttler A, and Küppers J 2004 Carbon 42 609
Related articles from Frontiers Journals
[1] LIU Chao-Zhuo, ZHOU Zhu-Ying, SHI Li-Qun, WANG Bao-Yi, HAOXiao-Peng, ZHAO Guo-Qing. Annealing Behaviour of Helium Bubbles in Titanium Films by Thermal Desorption Spectroscopy and Positron Beam Analysis[J]. Chin. Phys. Lett., 2007, 24(8): 086801
Viewed
Full text


Abstract