THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
The $\varOmega(2012)$ as a Hadronic Molecule |
Ju-Jun Xie1,2,3* and Li-Sheng Geng4,5,6,3* |
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China 2School of Nuclear Sciences and Technology, University of Chinese Academy of Sciences, Beijing 101408, China 3Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics, Chinese Academy of Sciences, Huizhou 516000, China 4School of Physics, Beihang University, Beijing 102206, China 5Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 102206, China 6Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
|
|
Cite this article: |
Ju-Jun Xie and Li-Sheng Geng 2024 Chin. Phys. Lett. 41 081402 |
|
|
Abstract Recently, a new excited baryon state, $\varOmega(2012)$, was observed in the invariant mass spectra of $K^-\varXi^0$ and $K^0_S \varXi^-$ by the Belle collaboration. This state has a narrow width ($\sim$ $6$ MeV) compared to other baryon states with a similar mass. Here, we provide a mini-review on the $\varOmega(2012)$ state from the molecular perspective, where it appears to be a dynamically generated state with spin-parity $3/2^-$ from the coupled-channels interactions of the $\bar{K} \varXi(1530)$ and $\eta \varOmega$ in $s$-wave and $\bar{K} \varXi$ in $d$-wave. Additionally, alternative explanations for the $\varOmega(2012)$ resonance are also discussed.
|
|
Received: 19 May 2024
Review
Published: 16 August 2024
|
|
PACS: |
14.20.Jn
|
(Hyperons)
|
|
11.10.St
|
(Bound and unstable states; Bethe-Salpeter equations)
|
|
12.38.Lg
|
(Other nonperturbative calculations)
|
|
|
|
|
[1] | Yelton J, Adachi I, Ahn J K et al. 2018 Phys. Rev. Lett. 121 052003 |
[2] | Workman R L, Burkert V D, Crede V et al. 2022 Prog. Theor. Exp. Phys. 2022 083C01 |
[3] | Guo F K, Hanhart C, Meißner U G, Wang Q, Zhao Q, and Zou B S 2018 Rev. Mod. Phys. 90 015004; Erratum: [2022 Rev. Mod. Phys. 94 029901] |
[4] | Kolomeitsev E E and Lutz M F M 2004 Phys. Lett. B 585 243 |
[5] | Sarkar S, Oset E, and Vicente Vacas M J 2005 Nucl. Phys. A 750 294; Erratum: [2006 Nucl. Phys. A 780 90] |
[6] | Garcıa-Recio C, Nieves J, and Salcedo L L 2007 Eur. Phys. J. A 31 540 |
[7] | Xu S Q, Xie J J, Chen X R, and Jia D J 2016 Commun. Theor. Phys. 65 53 |
[8] | Valderrama M P 2018 Phys. Rev. D 98 054009 |
[9] | Lin Y H and Zou B S 2018 Phys. Rev. D 98 056013 |
[10] | Huang Y, Liu M Z, Lu J X, Xie J J, and Geng L S 2018 Phys. Rev. D 98 076012 |
[11] | Pavao R and Oset E 2018 Eur. Phys. J. C 78 857 |
[12] | Lin Y H, Wang F, and Zou B S 2020 Phys. Rev. D 102 074025 |
[13] | Lu J X, Zeng C H, Wang E, Xie J J, and Geng L S 2020 Eur. Phys. J. C 80 361 |
[14] | Ikeno N, Liang W H, and Oset E 2024 Phys. Rev. D 109 054023 |
[15] | Aaij R et al. [LHCb] 2017 Phys. Rev. Lett. 118 182001 |
[16] | Zeng C H, Lu J X, Wang E, Xie J J, and Geng L S 2020 Phys. Rev. D 102 076009 |
[17] | Ikeno N, Liang W H, Toledo G, and Oset E 2022 Phys. Rev. D 106 034022 |
[18] | Li Y, Tang S S, Jia S et al. [Belle] 2021 Phys. Rev. D 104 052005 |
[19] | Arifi A J, Suenaga D, Hosaka A, and Oh Y 2022 Phys. Rev. D 105 094006 |
[20] | Jia S, Shen C P, Adachi I et al. [Belle] 2019 Phys. Rev. D 100 032006 |
[21] | [Belle] 2022 arXiv:2207.03090 [hep-ex] |
[22] | Sarkar S, Oset E, and Vicente Vacas M J 2005 Phys. Rev. C 72 015206 |
[23] | Roca L, Sarkar S, Magas V K, and Oset E 2006 Phys. Rev. C 73 045208 |
[24] | Capstick S and Isgur N 1986 Phys. Rev. D 34 2809 [1985 AIP Conf. Proc. 132 267] |
[25] | Löring U, Metsch B C, and Petry H R 2001 Eur. Phys. J. A 10 447 |
[26] | Pervin M and Roberts W 2008 Phys. Rev. C 77 025202 |
[27] | Chen Y and Ma B Q 2009 Nucl. Phys. A 831 1 |
[28] | Faustov R N and Galkin V O 2015 Phys. Rev. D 92 054005 |
[29] | Yuan S G, An C S, Wei K W, Zou B S, and Xu H S 2013 Phys. Rev. C 87 025205 |
[30] | An C S, Metsch B C, and Zou B S 2013 Phys. Rev. C 87 065207 |
[31] | An C S and Zou B S 2014 Phys. Rev. C 89 055209 |
[32] | Chao K T, Isgur N, and Karl G 1981 Phys. Rev. D 23 155 |
[33] | Liu X, Huang H, Ping J, and Chen D 2021 Phys. Rev. C 103 025202 |
[34] | Hu X and Ping J 2022 Phys. Rev. D 106 054028 |
[35] | Aliev T M, Azizi K, Sarac Y, and Sundu H 2018 Phys. Rev. D 98 014031 |
[36] | Aliev T M, Azizi K, Sarac Y, and Sundu H 2018 Eur. Phys. J. C 78 894 |
[37] | Su N, Chen H X, Gubler P, and Hosaka A 2024 arXiv:2405.06958 [hep-ph] |
[38] | Xiao L Y and Zhong X H 2018 Phys. Rev. D 98 034004 |
[39] | Wang Z Y, Gui L C, Lü Q F, Xiao L Y, and Zhong X H 2018 Phys. Rev. D 98 114023 |
[40] | Liu M S, Wang K L, Lü Q F, and Zhong X H 2020 Phys. Rev. D 101 016002 |
[41] | Wang K L, Lü Q F, Xie J J, and Zhong X H 2023 Phys. Rev. D 107 034015 |
[42] | Zhong H H, Ni R H, Chen M Y, Zhong X H, and Xie J J 2023 Chin. Phys. C 47 063104 |
[43] | Lü Q F, Nagahiro H, and Hosaka A 2023 Phys. Rev. D 107 014025 |
[44] | Guo F K, Peng H P, Xie J J, and Zhou X R 2022 arXiv:2203.07141 [hep-ph] |
[45] | Amaryan M, Bashkanov M, Dobbs S [KLF] et al. 2020 arXiv:2008.08215 [nucl-ex] |
[46] | Aoki K, Fujioka H, Gogami T, Hidaka Y, Hiyama E, Honda R, Hosaka A, Ichikawa Y, Ieiri M, Isaka M et al. 2021 arXiv:2110.04462 [nuclex] |
[47] | Liu M Z, Pan Y W, Liu Z W, Wu T W, Lu J X, and Geng L S 2024 arXiv:2404.06399 [hep-ph] |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|