Chin. Phys. Lett.  2024, Vol. 41 Issue (8): 080501    DOI: 10.1088/0256-307X/41/8/080501
GENERAL |
Nonlinear-Optical Analogies in Nuclear-Like Soliton Reactions: Selection Rules, Nonlinear Tunneling and Sub-Barrier Fusion–Fission
T. L. Belyaeva1 and V. N. Serkin2*
1Universidad Autonoma del Estado de Mexico, Av. Instituto Literario 100, C. P. 50000, Toluca, Mexico
2Benemerita Universidad Autonoma de Puebla, Av. 4 Sur 104, C. P. 72001, Puebla, Mexico
Cite this article:   
T. L. Belyaeva and V. N. Serkin 2024 Chin. Phys. Lett. 41 080501
Download: PDF(4221KB)   PDF(mobile)(4241KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The main goal of our study is to reveal unexpected but intriguing analogies arising between optical solitons and nuclear physics, which still remain hidden from us. We consider the main cornerstones of the concept of nonlinear optics of nuclear reactions and the well-dressed repulsive-core solitons. On the base of this model, we reveal the most intriguing properties of the nonlinear tunneling of nucleus-like solitons and the soliton self-induced sub-barrier transparency effect. We describe novel interesting and stimulating analogies between the interaction of nucleus-like solitons on the repulsive barrier and nuclear sub-barrier reactions. The main finding of this study concerns the conservation of total number of nucleons (or the baryon number) in nuclear-like soliton reactions. We show that inelastic interactions among well-dressed repulsive-core solitons arise only when a “cloud” of “dressing” spectral side-bands appears in the frequency spectra of the solitons. This property of nucleus-like solitons is directly related to the nuclear density distribution described by the dimensionless small shape-squareness parameter. Thus the Fourier spectra of nucleus-like solitons are similar to the nuclear form factors. We show that the nuclear-like reactions between well-dressed solitons are realized by “exchange” between “particle-like” side bands in their spectra.
Received: 20 May 2024      Published: 21 August 2024
PACS:  05.45.Yv (Solitons)  
  05.45.-a (Nonlinear dynamics and chaos)  
  25.70.Jj (Fusion and fusion-fission reactions)  
  42.65.-k (Nonlinear optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/8/080501       OR      https://cpl.iphy.ac.cn/Y2024/V41/I8/080501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
T. L. Belyaeva and V. N. Serkin
[1] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[2] Hasegawa A 2023 Optik 279 170769
[3] Dudley J M, Finot C, Genty G, and Taylor R 2023 Opt. Photonics News 34 26
[4] Feshbach H, Porter C E, and Weisskopf V F 1954 Phys. Rev. 96 448
[5] Hodgson P E 1963 The Optical Model of Elastic Scattering (Oxford: Clarendon Press)
[6] Woods R D and Saxon D S 1954 Phys. Rev. 95 577
[7] Hofstadter R 1957 Ann.Rev. Nucl. Sci. 7 231
[8]Amsler C 2015 Nuclear and Particle Physics (Bristol: IOP Publishing)
[9] Serkin V N and Belyaeva T L 2023 Opt. Commun. 549 129831
[10] Serkin V N, Belyaeva T L, Alexandrov I V, and Melchor G M 2001 Proc. SPIE 4271 292
[11]Dianov E M, Nikonova Z S, Prokhorov A M, and Serkin V N 1986 Sov. Tech. Phys. Lett. 12 311
[12] Belyaeva T L, Kovachev L M, and Serkin V N 2020 Optik 210 164483
[13]Kovalev A S and Kosevich A M 1976 Sov. J. Low Temp. Phys. 2 449
[14] Pushkarov K I, Pushkarov D I, and Tomov I V 1979 Opt. Quantum Electron. 11 471
[15] Newell A C 1978 J. Math. Phys. 19 1126
[16] Belyaeva T L and Serkin V N 2012 Eur. Phys. J. D 66 153
[17] Belyaeva T L, Serkin V N, Hernandez-Tenorio C, and Garcia-Santibañez F 2010 J. Mod. Opt. 57 1087
[18] Serkin V N, Hasegawa A, and Belyaeva T L 2013 J. Mod. Opt. 60 116
[19] Serkin V N and Belyaeva T L 2019 Optik 176 38
[20] Uthayakumar T, Al Sakkaf L, and Al Khawaja U 2021 Phys. Rev. E 104 034203
[21] Damgaard Hansen S, Nygaard N, and Mølmer K 2021 Appl. Sci. 11 2294
[22] Gamow G 1928 Z. Phys. 51 204
[23]Serkin V N, Hasegawa A, and Belyaeva T L 2017 Hidden Symmetry Reductions and the Ablowitz-Kaup-Newell-Segur Hierarchies for Nonautonomous Solitons. In: Odyssey of Light in Nonlinear Optical Fibers (New York: CRC Press) p. 145
[24] Serkin V N and Belyaeva T L 2001 J. Exp. Theor. Phys. Lett. 74 573
[25] Gao Y, Tang X Y, and Lou S Y 2009 Chin. Phys. Lett. 26 030502
[26] Dai C Q, Wang Y Y, and Zhang J F 2010 Opt. Express 18 17548
[27] He J D and Zhang J F 2011 J. Phys. A 44 205203
[28] Mahalingam A and Mani Rajan M S 2015 Opt. Fiber Technol. 25 44
[29] Jia H P, Yang R C, Dai C Q, and Guo Y Y 2019 J. Mod. Opt. 66 665
[30] Hernandez-Tenorio C, Belyaeva T L, and Serkin V N 2007 Physica B 398 460
[31] Serkin V N and Belyaeva T L 2018 Optik 158 1289
[32] Belyaeva T L and Serkin V N 2022 Nonlinear Dyn. 107 1153
[33] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[34] Maddouri K, Triki H, Wang N, and Zhou Q 2024 Phys. Lett. A 512 129584
[35] Wang H T, Yang H J, Tian Y, and Liu W J 2024 Chaos 34 053125
[36] Rebbi C and Soliani G 1984 Solitons and Particles (Singapore: World Scientific)
[37] Rybakov Y P and Saha B 1995 Found. Phys. 25 1723
[38] Manton N S 2008 Nonlinearity 21 T221
[39] Kovachev L M 2004 Physica D 190 78
[40] Kovachev L M, Georgieva D A, and Kovachev K L 2012 Opt. Lett. 37 4047
[41] Zhao Y, Lei Y B, Xu Y X et al. 2022 Chin. Phys. Lett. 39 034202
[42] Zhou Q, Zhong Y, Triki H et al. 2022 Chin. Phys. Lett. 39 044202
[43] Yao Y, Yi H, Zhang X, and Ma G 2023 Chin. Phys. Lett. 40 100503
[44] Wang S B, Ma G L, Zhang X, and Zhu D Y 2022 Chin. Phys. Lett. 39 114202
[45] Wazwaz A M 2023 Chin. Phys. Lett. 40 120501
[46] Belyaeva T L, Aguilera E F, Martinez-Quiroz E et al. 2009 Phys. Rev. C 80 064617
Related articles from Frontiers Journals
[1] Zhen-Tao Ju, Zhi-Zeng Si, Xin Yan, and Chao-Qing Dai. Solitons and Their Biperiodic Pulsation in Ultrafast Fiber Lasers Based on CB/GO[J]. Chin. Phys. Lett., 2024, 41(8): 080501
[2] Houhui Yi, Xiaofeng Li, Junling Zhang, Xin Zhang, and Guoli Ma. Higher-Order Nonlinear Effects on Optical Soliton Propagation and Their Interactions[J]. Chin. Phys. Lett., 2024, 41(7): 080501
[3] Yu Zhong, Houria Triki, and Qin Zhou. Dynamics of Ring Dark Solitons and the Following Vortices in Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2024, 41(7): 080501
[4] Yong Meng, Ping-Ping Fang, and Ji Lin. Nondegenerate Soliton Solutions of (2+1)-Dimensional Multi-Component Maccari System[J]. Chin. Phys. Lett., 2024, 41(6): 080501
[5] Ling-Juan Yan, Ya-Jie Liu, and Xing-Biao Hu. Some Modified Equations of the Sine-Hilbert Type[J]. Chin. Phys. Lett., 2024, 41(4): 080501
[6] Houhui Yi, Xin Zhang, Lingxian Shi, Yanli Yao, Shubin Wang, and Guoli Ma. Three-Soliton Interactions and the Implementation of Their All-Optical Switching Function[J]. Chin. Phys. Lett., 2024, 41(4): 080501
[7] Zhi-Zeng Si, Chao-Qing Dai, and Wei Liu. Tunable Three-Wavelength Fiber Laser and Transient Switching between Three-Wavelength Soliton and Q-Switched Mode-Locked States[J]. Chin. Phys. Lett., 2024, 41(2): 080501
[8] Abdul-Majid Wazwaz. New Painlevé Integrable (3+1)-Dimensional Combined pKP–BKP Equation: Lump and Multiple Soliton Solutions[J]. Chin. Phys. Lett., 2023, 40(12): 080501
[9] Xin Zhang, Houhui Yi, Yanli Yao, Shubin Wang, and Lingxian Shi. All-Optical Switches for Optical Soliton Interactions in a Birefringent Fiber[J]. Chin. Phys. Lett., 2023, 40(12): 080501
[10] Yanli Yao, Houhui Yi, Xin Zhang, and Guoli Ma. Effective Control of Three Soliton Interactions for the High-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2023, 40(10): 080501
[11] Vladimir I. Kruglov and Houria Triki. Interacting Solitons, Periodic Waves and Breather for Modified Korteweg–de Vries Equation[J]. Chin. Phys. Lett., 2023, 40(9): 080501
[12] Si-Yu Zhu, De-Xing Kong, and Sen-Yue Lou. Dark Korteweg–De Vrise System and Its Higher-Dimensional Deformations[J]. Chin. Phys. Lett., 2023, 40(8): 080501
[13] Xinyi Zhang and Ye Wu. Soliton Interactions with Different Dispersion Curve Functions in Heterogeneous Systems[J]. Chin. Phys. Lett., 2023, 40(8): 080501
[14] Xi-Meng Liu, Zhi-Yang Zhang, and Wen-Jun Liu. Physics-Informed Neural Network Method for Predicting Soliton Dynamics Supported by Complex Parity-Time Symmetric Potentials[J]. Chin. Phys. Lett., 2023, 40(7): 080501
[15] Cuicui Ding, Qin Zhou, Siliu Xu, Houria Triki, Mohammad Mirzazadeh, and Wenjun Liu. Nonautonomous Breather and Rogue Wave in Spinor Bose–Einstein Condensates with Space-Time Modulated Potentials[J]. Chin. Phys. Lett., 2023, 40(4): 080501
Viewed
Full text


Abstract