CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Impact of Quantum Coherence on Inelastic Thermoelectric Devices: From Diode to Transistor |
Bei Cao1, Chongze Han1, Xiang Hao1, Chen Wang2*, and Jincheng Lu1* |
1Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China 2Department of Physics, Zhejiang Normal University, Jinhua 321004, China
|
|
Cite this article: |
Bei Cao, Chongze Han, Xiang Hao et al 2024 Chin. Phys. Lett. 41 077302 |
|
|
Abstract We present a study on inelastic thermoelectric devices, wherein charge currents and electronic and phononic heat currents are intricately interconnected. The employment of double quantum dots in conjunction with a phonon reservoir positions them as promising candidates for quantum thermoelectric diodes and transistors. We illustrate that quantum coherence yields significant charge and Seebeck rectification effects. It is worth noting that, while the thermal transistor effect is observable in the linear response regime, especially when phonon-assisted inelastic processes dominate the transport, quantum coherence does not enhance thermal amplification. Our work may provide valuable insights for the optimization of inelastic thermoelectric devices.
|
|
Received: 06 March 2024
Published: 24 July 2024
|
|
|
|
|
|
[1] | Li N, Ren J, Wang L, Zhang G, Hänggi P, and Li B 2012 Rev. Mod. Phys. 84 1045 |
[2] | Thierschmann H, Sánchez R, Sothmann B, Arnold F, Heyn C, Hansen W, Buhmann H, and Molenkamp L W 2015 Nat. Nanotechnol. 10 854 |
[3] | Benenti G, Casati G, Saito K, and Whitney R S 2017 Phys. Rep. 694 1 |
[4] | Jiang J H, Entin-Wohlman O, and Imry Y 2012 Phys. Rev. B 85 075412 |
[5] | Jiang J H and Imry Y 2017 Phys. Rev. Appl. 7 064001 |
[6] | Liu H, Wang C, Wang L Q, and Ren J 2019 Phys. Rev. E 99 032114 |
[7] | Lu J, Wang R, Wang C, and Jiang J H 2023 Entropy 25 498 |
[8] | Ren J 2023 Chin. Phys. Lett. 40 090501 |
[9] | Bu K, Singh U, Fei S M, Pati A K, and Wu J 2017 Phys. Rev. Lett. 119 150405 |
[10] | Camati P A, Santos J F G, and Serra R M 2019 Phys. Rev. A 99 062103 |
[11] | Liu J and Segal D 2021 Phys. Rev. E 103 032138 |
[12] | Aimet S and Kwon H 2023 Phys. Rev. A 107 012221 |
[13] | Behera J, Bedkihal S, Agarwalla B K, and Bandyopadhyay M 2023 Phys. Rev. B 108 165419 |
[14] | Chen Z H, Wang F Y, Chen H, Lu J C, and Wang C 2023 Chin. Phys. Lett. 40 050501 |
[15] | Zhang C X, Li T J, Xu L J, and Huang J P 2023 Chin. Phys. Lett. 40 054401 |
[16] | Engel G S, Calhoun T R, Read E L, Ahn T K, Mančal T, Cheng Y C, Blankenship R E, and Fleming G R 2007 Nature 446 782 |
[17] | Alipasha V and Martin B P 2010 New J. Phys. 12 085001 |
[18] | Sánchez R, Gorini C, and Fleury G 2021 Phys. Rev. B 104 115430 |
[19] | Ivander F, Anto-Sztrikacs N, and Segal D 2022 New J. Phys. 24 103010 |
[20] | Yuan J H, Ruan H L, Liu D H, He J Z, and Wang J H 2023 Chin. Phys. Lett. 40 100502 |
[21] | Gao J Z, Liu X, Wang J H, and He J Z 2023 Chin. Phys. Lett. 40 117301 |
[22] | Wang R, Wang C, Lu J, and Jiang J H 2022 Adv. Phys.: X 7 2082317 |
[23] | Entin-Wohlman O, Imry Y, and Aharony A 2010 Phys. Rev. B 82 115314 |
[24] | Lu J, Jiang J H, and Imry Y 2021 Phys. Rev. B 103 085429 |
[25] | Xi M, Wang R, Lu J, and Jiang J H 2021 Chin. Phys. Lett. 38 088801 |
[26] | Nian L L, Hu S Q, Xiong L, Lü J T, and Zheng B 2023 Phys. Rev. B 108 085430 |
[27] | Nian L L, Zheng B, and Lü J T 2023 Phys. Rev. B 107 L241405 |
[28] | Pekola J P and Karimi B 2021 Rev. Mod. Phys. 93 041001 |
[29] | Lü J T, Wang J S, Hedegård P, and Brandbyge M 2016 Phys. Rev. B 93 205404 |
[30] | Li Y, Li W, Han T, Zheng X, Li J, Li B, Fan S, and Qiu C W 2021 Nat. Rev. Mater. 6 488 |
[31] | Jiang J H, Kulkarni M, Segal D, and Imry Y 2015 Phys. Rev. B 92 045309 |
[32] | Lu J, Wang R, Wang C, and Jiang J H 2020 Phys. Rev. B 102 125405 |
[33] | Lu J, Wang R, Ren J, Kulkarni M, and Jiang J H 2019 Phys. Rev. B 99 035129 |
[34] | Campisi M, Hänggi P, and Talkner P 2011 Rev. Mod. Phys. 83 771 |
[35] | Wang Z, Wang L Q, Chen J Z, Wang C, and Ren J 2022 Front. Phys. 17 13201 |
[36] | Yamamoto K and Hatano N 2015 Phys. Rev. E 92 042165 |
[37] | Jiang J H and Imry Y 2016 C. R. Phys. 17 1047 |
[38] | Lu J C, Wang Z, Ren J, Wang C, and Jiang J H 2024 Phys. Rev. B 109 125407 |
[39] | Zhang L, Wang J S, and Li B 2010 Phys. Rev. B 81 100301 |
[40] | Ren J and Zhu J X 2013 Phys. Rev. B 88 094427 |
[41] | Yang Y, Chen H, Wang H, Li N, and Zhang L 2018 Phys. Rev. E 98 042131 |
[42] | Zhang Y and Su S 2021 Physica A 584 126347 |
[43] | Wang C, Xu D, Liu H, and Gao X 2019 Phys. Rev. E 99 042102 |
[44] | Díaz I and Sánchez R 2021 New J. Phys. 23 125006 |
[45] | Tesser L, Bhandari B, Andrea Erdman P, Paladino E, Fazio R, and Taddei F 2022 New J. Phys. 24 035001 |
[46] | Khandelwal S, Perarnau-Llobet M, Seah S, Brunner N, and Haack G 2023 Phys. Rev. Res. 5 013129 |
[47] | Joulain K, Drevillon J, Ezzahri Y, and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601 |
[48] | Guo B Q, Liu T, and Yu C S 2018 Phys. Rev. E 98 022118 |
[49] | Yang Y, Zhao Y, and Zhang L 2023 Appl. Phys. Lett. 122 232201 |
[50] | Li B, Wang L, and Casati G 2004 Phys. Rev. Lett. 93 184301 |
[51] | Li B, Wang L, and Casati G 2006 Appl. Phys. Lett. 88 143501 |
[52] | Sánchez R, Thierschmann H, and Molenkamp L W 2017 Phys. Rev. B 95 241401 |
[53] | Wang C, Chen X M, Sun K W, and Ren J 2018 Phys. Rev. A 97 052112 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|