Chin. Phys. Lett.  2024, Vol. 41 Issue (6): 067502    DOI: 10.1088/0256-307X/41/6/067502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Enhanced Spin–Orbit Torques in Graphene by Pt Adatoms Decoration
Yifei Wang, Qi Zhang, Haiming Xu, Xi Guo, Yuhan Chang, Jianrong Zhang, Xiaodong He, Yalu Zuo*, Baoshan Cui*, and Li Xi
Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
Cite this article:   
Yifei Wang, Qi Zhang, Haiming Xu et al  2024 Chin. Phys. Lett. 41 067502
Download: PDF(976KB)   PDF(mobile)(1020KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Graphene (Gr) with widely acclaimed characteristics, such as exceptionally long spin diffusion length at room temperature, provides an outstanding platform for spintronics. However, its inherent weak spin–orbit coupling (SOC) has limited its efficiency for generating the spin currents in order to control the magnetization switching process for applications in spintronics memories. Following the theoretical prediction on the enhancement of SOC in Gr by heavy atoms adsorption, here we experimentally observe a sizeable spin–orbit torques (SOTs) in Gr by the decoration of its surface with Pt adatoms in Gr/Pt($t_{\rm Pt} $)/FeNi trilayers with the optimal damping-like SOT efficiency around 0.55 by 0.6-nm-thick Pt layer adsorption. The value is nearly four times larger than that of the Pt/FeNi sample without Gr and nearly twice the value of the Gr/FeNi sample without Pt adsorption. The efficiency of the enhanced SOT in Gr by Pt adatoms is also demonstrated by the field-free SOT magnetization switching process with a relatively low critical current density around 5.4 MA/cm$^2$ in Gr/Pt/FeNi trilayers with the in-plane magnetic anisotropy. These findings pave the way for Gr spintronics applications, offering solutions for future low power consumption memories.
Received: 21 January 2024      Published: 04 June 2024
PACS:  75.70.Tj (Spin-orbit effects)  
  77.80.Fm (Switching phenomena)  
  81.05.ue (Graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/6/067502       OR      https://cpl.iphy.ac.cn/Y2024/V41/I6/067502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yifei Wang
Qi Zhang
Haiming Xu
Xi Guo
Yuhan Chang
Jianrong Zhang
Xiaodong He
Yalu Zuo
Baoshan Cui
and Li Xi
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, and Treger D M 2001 Science 294 1488
[2] Wolf S A, Lu J, Stan M R, Chen E, and Treger D M 2010 Proc. IEEE 98 2155
[3] Ikegawa S, Mancoff F B, Janesky J, and Aggarwal S 2020 IEEE Trans. Electron Devices 67 1407
[4] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, and Gambardella P 2011 Nature 476 189
[5] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, and Buhrman R A 2012 Science 336 555
[6] Cubukcu M, Boulle O, Drouard M, Garello K, Onur Avci C, Mihai Miron I, Langer J, Ocker B, Gambardella P, and Gaudin G 2014 Appl. Phys. Lett. 104 042406
[7] Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, Deac A, Pirro P, Adelmann C, Anane A, Chumak A V, Hirohata A, Mangin S, Valenzuela S O, OnbaşlıM C, d'Aquino M, Prenat G, Finocchio G, Lopez-Diaz L, Chantrell R, Chubykalo-Fesenko O, and Bortolotti P 2020 Nat. Electron. 3 446
[8] Rybkina A A, Rybkin A G, Klimovskikh I I, Skirdkov P N, Zvezdin K A, Zvezdin A K, and Shikin A M 2020 Nanotechnology 31 165201
[9] Song C, Zhang R, Liao L, Zhou Y, Zhou X, Chen R, You Y, Chen X, and Pan F 2021 Prog. Mater. Sci. 118 100761
[10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666
[11] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, and Strano M S 2012 Nat. Nanotechnol. 7 699
[12] Yang H, Valenzuela S O, Chshiev M, Couet S, Dieny B, Dlubak B, Fert A, Garello K, Jamet M, Jeong D E, Lee K, Lee T, Martin M B, Kar G S, Sénéor P, Shin H J, and Roche S 2022 Nature 606 663
[13] Avsar A, Ochoa H, Guinea F, Özyilmaz B, van Wees B J, and Vera-Marun I J 2020 Rev. Mod. Phys. 92 021003
[14] Barreiro A, Lazzeri M, Moser J, Mauri F, and Bachtold A 2009 Phys. Rev. Lett. 103 076601
[15] Han W, Kawakami R K, Gmitra M, and Fabian J 2014 Nat. Nanotechnol. 9 794
[16] Wen H, Dery H, Amamou W, Zhu T, Lin Z, Shi J, Žutić I, Krivorotov I, Sham L J, and Kawakami R K 2016 Phys. Rev. Appl. 5 044003
[17] Castro Neto A H and Guinea F 2009 Phys. Rev. Lett. 103 026804
[18] Balakrishnan J, Kok Wai Koon G, Jaiswal M, Castro Neto A H, and Özyilmaz B 2013 Nat. Phys. 9 284
[19] Wang Z, Ki D K, Chen H, Berger H, MacDonald A H, and Morpurgo A F 2015 Nat. Commun. 6 8339
[20] Abdelouahed S, Ernst A, Henk J, Maznichenko I V, and Mertig I 2010 Phys. Rev. B 82 125424
[21] Marchenko D, Varykhalov A, Scholz M R, Bihlmayer G, Rashba E I, Rybkin A, Shikin A M, and Rader O 2012 Nat. Commun. 3 1232
[22] Shikin A M, Rybkin A G, Marchenko D, Rybkina A A, Scholz M R, Rader O, and Varykhalov A 2013 New J. Phys. 15 013016
[23] Balakrishnan J, Koon G K W, Avsar A, Ho Y, Lee J H, Jaiswal M, Baeck S J, Ahn J H, Ferreira A, Cazalilla M A, Castro Neto A H, and Özyilmaz B 2014 Nat. Commun. 5 4748
[24] Calleja F, Ochoa H, Garnica M, Barja S, Navarro J J, Black A, Otrokov M M, Chulkov E V, Arnau A, Vázquez de Parga A L, Guinea F, and Miranda R 2014 Nat. Phys. 11 43
[25] Klimovskikh I I, Tsirkin S S, Rybkin A G, Rybkina A A, Filianina M V, Zhizhin E V, Chulkov E V, and Shikin A M 2014 Phys. Rev. B 90 235431
[26] Rybkin A G, Rybkina A A, Otrokov M M, Vilkov O Y, Klimovskikh I I, Petukhov A E, Filianina M V, Voroshnin V Y, Rusinov I P, Ernst A, Arnau A, Chulkov E V, and Shikin A M 2018 Nano Lett. 18 1564
[27] Brey L 2015 Phys. Rev. B 92 235444
[28] Ghising P, Biswas C, and Lee Y H 2023 Adv. Mater. 35 2209137
[29] Casiraghi C, Pisana S, Novoselov K S, Geim A K, and Ferrari A C 2007 Appl. Phys. Lett. 91 233108
[30] Schedin F, Lidorikis E, Lombardo A, Kravets V G, Geim A K, Grigorenko A N, Novoselov K S, and Ferrari A C 2010 ACS Nano 4 5617
[31] Wang P, Zhang D, Zhang L, and Fang Y 2013 Chem. Phys. Lett. 556 146
[32] Lee J, Shim S, Kim B, and Shin H S 2011 Chem. - Eur. J. 17 2381
[33] Zhan Z, Liu L, Wang W, Cao Z, Martinelli A, Wang E, Cao Y, Chen J, Yurgens A, and Sun J 2016 Adv. Opt. Mater. 4 2021
[34] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, and Geim A K 2006 Phys. Rev. Lett. 97 187401
[35] Björck M and Andersson G 2007 J. Appl. Crystallogr. 40 1174
[36] Yun J, Sheng Y, Guo X, Zheng B, Chen P, Cao Y, Yan Z, He X, Jin P, Li J, Cui M, Shen T, Wang Z, Yang D, Zuo Y, and Xi L 2021 Phys. Rev. B 104 134416
[37] Yun J, Bai Q, Yan Z, Chang M, Mao J, Zuo Y, Yang D, Xi L, and Xue D 2020 Adv. Funct. Mater. 30 1909092
[38] Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, and Ohno H 2013 Nat. Mater. 12 240
[39] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G, and Gambardella P 2013 Nat. Nanotechnol. 8 587
[40] Wang W, Yan Z, Cao Y, Gao C, Shi Z, Si M, Cao J, Xi L, Yang D, and Xue D 2022 Adv. Funct. Mater. 32 2204212
[41] Avci C O, Garello K, Gabureac M, Ghosh A, Fuhrer A, Alvarado S F, and Gambardella P 2014 Phys. Rev. B 90 224427
[42] Liu Q, Lin X, and Zhu L 2023 Adv. Sci. 10 2301409
[43] Ueda K, Moriuchi N, Fukushima K, Kida T, Hagiwara M, and Matsuno J 2020 Phys. Rev. B 102 134432
[44] Bauer G E W, Saitoh E, and van Wees B J 2012 Nat. Mater. 11 391
[45] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, and Saitoh E 2008 Nature 455 778
[46] Asshoff P U, Sambricio J L, Rooney A P, Slizovskiy S, Mishchenko A, Rakowski A M, Hill E W, Geim A K, Haigh S J, Fal'ko V I, Vera-Marun I J, and Grigorieva I V 2017 2D Mater. 4 031004
[47] Nan T, Emori S, Boone C T, Wang X, Oxholm T M, Jones J G, Howe B M, Brown G J, and Sun N X 2015 Phys. Rev. B 91 214416
[48] Khvalkovskiy A V, Cros V, Apalkov D, Nikitin V, Krounbi M, Zvezdin K A, Anane A, Grollier J, and Fert A 2013 Phys. Rev. B 87 020402
[49] Namba T, Tamura K, Hatsuda K, Nakamura T, Ohata C, Katsumoto S, and Haruyama J 2018 Appl. Phys. Lett. 113 053106
[50] Takeuchi Y, Zhang C, Okada A, Sato H, Fukami S, and Ohno H 2018 Appl. Phys. Lett. 112 192408
[51] Ghosh A, Garello K, Avci C O, Gabureac M, and Gambardella P 2017 Phys. Rev. Appl. 7 014004
[52] Mihajlović G, Mosendz O, Wan L, Smith N, Choi Y, Wang Y, and Katine J A 2016 Appl. Phys. Lett. 109 192404
[53] Fukami S, Anekawa T, Zhang C, and Ohno H 2016 Nat. Nanotechnol. 11 621
[54] Cui B, Chen S, Li D, Yun J, Guo X, Wu K, Zhang X, Wang Y, Zuo Y, Gao M, and Xi L 2018 Appl. Phys. Express 11 013001
Related articles from Frontiers Journals
[1] V. D. Esin, A. A. Avakyants, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov. Second-Harmonic Response in Magnetic Nodal-Line Semimetal Fe$_3$GeTe$_2$[J]. Chin. Phys. Lett., 2022, 39(9): 067502
[2] Jiahao Liu, Zidong Wang, Teng Xu, Hengan Zhou, Le Zhao, Soong-Guen Je, Mi-Young Im, Liang Fang, and Wanjun Jiang. The 20-nm Skyrmion Generated at Room Temperature by Spin-Orbit Torques[J]. Chin. Phys. Lett., 2022, 39(1): 067502
[3] Qian Ye, Yu-Hao Shen, and Chun-Gang Duan. Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2021, 38(8): 067502
[4] Jin Yang, Jian Li, Liangzhong Lin, and Jia-Ji Zhu. An Origin of Dzyaloshinskii–Moriya Interaction at Graphene-Ferromagnet Interfaces Due to the Intralayer RKKY/BR Interaction[J]. Chin. Phys. Lett., 2020, 37(8): 067502
[5] Huan Li, Zhi-Yong Wang, Xiao-Jun Zheng, Yu Liu, Yin Zhong. Magnetic and topological transitions in three-dimensional topological Kondo insulator[J]. Chin. Phys. Lett., 2018, 35(12): 067502
[6] Lu-Bing Shao, Zi-Dan Wang, Rui Shen, Li Sheng, Bo-Gen Wang, Ding-Yu Xing. Controlling Fusion of Majorana Fermions in One-Dimensional Systems by Zeeman Field[J]. Chin. Phys. Lett., 2017, 34(6): 067502
[7] CHENG Fang, REN Yi, SUN Jin-Fang. Transport through a Single Barrier on Monolayer MoS2[J]. Chin. Phys. Lett., 2015, 32(10): 067502
[8] ZHAO Ke-Han, WANG Yu-Hang, SHI Xiao-Lan, LIU Na, ZHANG Liu-Wan. Orbital Dilution Effect on Structural and Magnetic Properties of FeMnXV2O4[J]. Chin. Phys. Lett., 2015, 32(02): 067502
[9] BAO Wei-Cheng, ZOU Liang-Jian. Electrical Control of Edge Magnetism in Two-Dimensional Buckled Honeycomb Lattice[J]. Chin. Phys. Lett., 2014, 31(09): 067502
Viewed
Full text


Abstract