Chin. Phys. Lett.  2024, Vol. 41 Issue (6): 067501    DOI: 10.1088/0256-307X/41/6/067501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Observation of Giant Topological Hall Effect in Room-Temperature Ferromagnet Cr$_{0.82}$Te
Wei-Ting Miao1,2, Wei-Li Zhen1*, Zhen Lu1, Heng-Ning Wang1, Jie Wang1, Qun Niu1*, and Ming-Liang Tian1,2,3*
1Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
2Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
3School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
Cite this article:   
Wei-Ting Miao, Wei-Li Zhen, Zhen Lu et al  2024 Chin. Phys. Lett. 41 067501
Download: PDF(4643KB)   PDF(mobile)(5379KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Novel magnetic materials with non-trivial magnetic structures have led to exotic magnetic transport properties and significantly promoted the development of spintronics in recent years. Among them is the Cr$_{x}$Te$_{y}$ family, the magnetism of which can persist above room temperature, thus providing an ideal system for potential spintronic applications. Here we report the synthesis of a new compound, Cr$_{0.82}$Te, which demonstrates a record-high topological Hall effect at room temperature in this family. Cr$_{0.82}$Te displays soft ferromagnetism below the Curie temperature of 340 K. The magnetic measurement shows an obvious magneto-crystalline anisotropy with the easy axis located in the $ab$ plane. The anomalous Hall effect can be well explained by a dominating skew scattering mechanism. Intriguing, after removing the normal Hall effect and anomalous Hall effect, a topological Hall effect can be observed up to 300 K and reaches up to 1.14 $µ\Omega\cdot$cm at 10 K, which is superior to most topological magnetic structural materials. This giant topological Hall effect possibly originates from the noncoplanar spin configuration during the spin flop process. Our work extends a new Cr$_{x}$Te$_{y}$ system with topological non-trivial magnetic structure and broad prospects for spintronics applications in the future.
Received: 13 March 2024      Published: 20 June 2024
PACS:  75.50.Cc (Other ferromagnetic metals and alloys)  
  75.50.Gg (Ferrimagnetics)  
  75.30.Gw (Magnetic anisotropy)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/6/067501       OR      https://cpl.iphy.ac.cn/Y2024/V41/I6/067501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei-Ting Miao
Wei-Li Zhen
Zhen Lu
Heng-Ning Wang
Jie Wang
Qun Niu
and Ming-Liang Tian
[1] Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G, and Liu J P 2011 Adv. Mater. 23 821
[2] Slaughter J M 2009 Annu. Rev. Mater. Sci. 39 277
[3] Luo W, Zhu L L, and Zheng X J 2009 Chin. Phys. Lett. 26 117502
[4] Stiles M D and Zangwill A 2002 Phys. Rev. B 66 014407
[5] Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, and Gambardella P 2019 Rev. Mod. Phys. 91 035004
[6] Karube K, White J S, Reynolds N, Gavilano J L, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rønnow H M, Tokura Y, and Taguchi Y 2016 Nat. Mater. 15 1237
[7] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, and Tokura Y 2010 Nature 465 901
[8] Wang W, Zhao Y F, Wang F, Daniels M W, Chang C Z, Zang J, Xiao D, and Wu W 2021 Nano Lett. 21 1108
[9] Saha R, Meyerheim H L, Göbel B, Hazra B K, Deniz H, Mohseni K, Antonov V, Ernst A, Knyazev D, Bedoya-Pinto A, Mertig I, and Parkin S S P 2015 Nat. Commun. 6 7638
[10] Togawa Y, Koyama T, Takayanagi K, Mori S, Kousaka Y, Akimitsu J, Nishihara S, Inoue K, Ovchinnikov A S, and Kishine J 2012 Phys. Rev. Lett. 108 107202
[11] Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, and Åkerman J 2015 Nat. Commun. 6 8193
[12] Vistoli L, Wang W, Sander A, Zhu Q, Casals B, Cichelero R, Barthélémy A, Fusil S, Herranz G, Valencia S, Abrudan R, Weschke E, Nakazawa K, Kohno H, Santamaria J, Wu W, Garcia V, and Bibes M 2019 Nat. Phys. 15 67
[13] Zhang G, Luo Q, Wen X, Wu H, Yang L, Jin W, Li L, Zhang J, Zhang W, Shu H, and Chang H 2023 Chin. Phys. Lett. 40 117501
[14] Raju M, Petrović A P, Yagil A, Denisov K S, Duong N K, Göbel B, Şaşıoğlu E, Auslaender O M, Mertig I, Rozhansky I V, and Panagopoulos C 2021 Nat. Commun. 12 2758
[15] Liang D, DeGrave J P, Stolt M J, Tokura Y, and Jin S 2015 Nat. Commun. 6 8217
[16] Zhang C, Liu C, Zhang J, Yuan Y, Wen Y, Li Y, Zheng D, Zhang Q, Hou Z, Yin G, Liu K, Peng Y, and Zhang X X 2023 Adv. Mater. 35 2205967
[17] Li S, Kang W, Zhang X, Nie T, Zhou Y, Wang K L, and Zhao W 2021 Mater. Horiz. 8 854
[18] Zhang X C, Zhou Y, Mee Song K, Park T E, Xia J, Ezawa M, Liu X X, Zhao W S, Zhao G P, and Woo S 2020 J. Phys.: Condens. Matter 32 143001
[19] Yang S, Moon K W, Ju T S, Kim C, Kim H J, Kim J, Tran B X, Hong J I, and Hwang C 2021 Adv. Mater. 33 2104406
[20] Huang M, Gao L, Zhang Y, Lei X, Hu G, Xiang J, Zeng H, Fu X, Zhang Z, Chai G, Peng Y, Lu Y, Du H, Chen G, Zang J, and Xiang B 2021 Nano Lett. 21 4280
[21] Zheng X, Zhao X, Qi J, Luo X, Ma S, Chen C, Zeng H, Yu G, Fang N, Rehman S U, Ren W, Li B, and Zhong Z 2021 Appl. Phys. Lett. 118 072402
[22] Dijkstra J, Weitering H H, van Bruggen C F, Haas C, and de Groot R A 1989 J. Phys.: Condens. Matter 1 9141
[23] Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Getaye Sendeku M, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W, and He J 2020 Nano Lett. 20 3130
[24] Wang A, Rahman A, Du Z, Zhao J, Meng F, Liu W, Fan J, Ma C, Ge M, Pi L, Zhang L, and Zhang Y 2023 Phys. Rev. B 108 094429
[25] Zhang L Z, Zhang A L, He X D, Ben X W, Xiao Q L, Lu W L, Chen F, Feng Z, Cao S, Zhang J, and Ge J Y 2020 Phys. Rev. B 101 214413
[26] Zhu W, Ma Z, Yan J, Zheng G, Cheng L, Xu X, Meng Z, Shen L, An K, Zhou C, Qu Z, Luo X, Sun Y, Zhang Z, and Sheng Z 2020 J. Magn. Magn. Mater. 512 167019
[27] Ma X, Huang M, Wang S, Liu P, Zhang Y, Lu Y, and Xiang B 2023 ACS Appl. Electron. Mater. 5 2838
[28] Li C, Liu K, Jiang D, Jin C, Pei T, Wen T, Yue B, and Wang Y 2022 Inorg. Chem. 61 14641
[29] Takagaki M, Kawakami T, Tanaka N, Shirai M, and Motizuki K 1998 J. Phys. Soc. Jpn. 67 1014
[30] Sun S, Liang J, Liu R, Shen W, Wu H, Tian M, Cao L, Yang Y, Huang Z, Lin W, Du J, Ni Z, Xu Y, Chen Q, and Zhai Y 2022 J. Alloys Compd. 890 161818
[31] Shu Z, Wang H, Jo N H, Jozwiak C, Bostwick A, Rotenberg E, Xie W, and Kong T 2023 Phys. Rev. Mater. 7 044406
[32] Liu J, Ding B, Liang J J, Li X, Yao Y, and Wang W H 2022 ACS Nano 16 13911
[33] Hashimoto T and Yamaguchi M 1969 J. Phys. Soc. Jpn. 27 1121
[34] Yan J, Luo X, Lin G, Chen F, Gao J, Sun Y, Hu L, Tong P, Song W, Sheng Z, Lu W, Zhu X, and Sun Y 2018 Europhys. Lett. 124 67005
[35] Zhang X, Liu W, Niu W, Lu Q, Wang W, Sarikhani A, Wu X, Zhu C, Sun J, Vaninger M, Miceli P F, Li J, Singh D J, Hor Y S, Zhao Y, Liu C, He L, Zhang R, Bian G, Yu D, and Xu Y 2022 Adv. Funct. Mater. 32 2202977
[36] Deng Y, Xiang Z, Lei B, Zhu K, Mu H, Zhuo W, Hua X, Wang M, Wang Z, Wang G, Tian M, and Chen X 2022 Nano Lett. 22 9839
[37] Liu Y, Tan H, Hu Z, Yan B, and Petrovic C 2021 Phys. Rev. B 103 045106
[38] Yamada H and Takada S 1972 Prog. Theor. Exp. Phys. 48 1828
[39] Miao W, Zhen W, Tan C, Wang J, Nie Y, Wang H, Wang L, Niu Q, and Tian M 2023 ACS Nano 17 25449
[40] Nagaosa N, Sinova J, Onoda S, MacDonald A H, and Ong N P 2010 Rev. Mod. Phys. 82 1539
[41] Onoda S, Sugimoto N, and Nagaosa N 2008 Phys. Rev. B 77 165103
[42] Miyasato T, Abe N, Fujii T, Asamitsu A, Onoda S, Onose Y, Nagaosa N, and Tokura Y 2007 Phys. Rev. Lett. 99 086602
[43] Huang M, Wang S, Wang Z, Liu P, Xiang J, Feng C, Wang X, Zhang Z, Wen Z, Xu H, Yu G, Lu Y, Zhao W, Yang S A, Hou D, and Xiang B 2021 ACS Nano 15 9759
[44] Purwar S, Low A, Bose A, Narayan A, and Thirupathaiah S 2023 Phys. Rev. Mater. 7 094204
[45] Saha R, Meyerheim H L, Göbel B, Hazra B K, Deniz H, Mohseni K, Antonov V, Ernst A, Knyazev D, Bedoya-Pinto A, Mertig I, and Parkin S S P 2022 Nat. Commun. 13 3965
[46] Nakamura M, Morikawa D, Yu X Z, Kagawa F, Arima T H, Tokura Y, and Kawasaki M 2018 J. Phys. Soc. Jpn. 87 074704
[47] Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, Arima T H, and Tokura Y 2019 Science 365 914
[48] Liu Z H, Burigu A, Zhang Y J, Jafri H M, Ma X Q, Liu E K, Wang W H, and Wu G H 2018 Scr. Mater. 143 122
[49] Sürgers C, Fischer G, Winkel P, and Löhneysen H v 2014 Nat. Commun. 5 3400
[50] Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F, and Tokura Y 2013 Phys. Rev. Lett. 110 117202
[51] Zhang X Q, Ambhire S C, Lu Q S, Niu W, Cook J, Jiang J S, Hong D S, Alahmed L, He L, Zhang R, Xu Y B, Zhang S S L, Li P, and Bian G 2021 ACS Nano 15 15710
[52] Hall A E, Loudon J C, Midgley P A, Twitchett-Harrison A C, Holt S J R, Mayoh D A, Tidey J P, Han Y, Lees M R, and Balakrishnan G 2022 Phys. Rev. Mater. 6 024407
[53] Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, and Zhang X X 2016 Adv. Mater. 28 6887
Related articles from Frontiers Journals
[1] Lingling Gao, Junwen Lai, Dong Chen, Cuiying Pei, Qi Wang, Yi Zhao, Changhua Li, Weizheng Cao, Juefei Wu, Yulin Chen, Xingqiu Chen, Yan Sun, Claudia Felser, and Yanpeng Qi. Pressure-Tunable Large Anomalous Hall Effect in Ferromagnetic Metal LiMn$_{{6}}$Sn$_{{6}}$[J]. Chin. Phys. Lett., 2024, 41(5): 067501
[2] Ruo-Shui Liu, Jun Liu, Li-Chen Wang, Zheng-Rui Li, Xiang Yu, Yan Mi, Qiao-Yan Dong, Kai Li, Dan-Li Li, Chen-Hui Lv, Li-Feng Liu, Shu-Li He. Table-Like Large Magnetocaloric Effect in the Misch Metal $R$Si Compound[J]. Chin. Phys. Lett., 2020, 37(1): 067501
[3] Zhi-Feng Yu, Jun Lu, Hai-Long Wang, Xu-Peng Zhao, Da-Hai Wei, Jia-Lin Ma, Si-Wei Mao, Jian-Hua Zhao. Tunable Perpendicular Magnetic Anisotropy in Off-Stoichiometric Full-Heusler Alloy Co$_{2}$MnAl[J]. Chin. Phys. Lett., 2019, 36(6): 067501
[4] Jia-Lin Ma, Hai-Long Wang, Xing-Min Zhang, Shuai Yan, Wen-Sheng Yan, Jian-Hua Zhao. Epitaxial Growth and Magnetic Properties of NiMnAs Films on GaAs Substrates[J]. Chin. Phys. Lett., 2019, 36(1): 067501
[5] Li-Fu Bao, Wen-Deng Huang, Ya-Jie Ren. Tuning Martensitic Phase Transition by Non-Magnetic Atom Vacancy in MnCoGe Alloys and Related Giant Magnetocaloric Effect[J]. Chin. Phys. Lett., 2016, 33(07): 067501
[6] ZHOU Dong, ZHANG Yin-Feng, MA Xiao-Bai, LIU Shun-Quan, HAN Jing-Zhi, ZHU Ming-Gang, WANG Chang-Sheng, YANG Jin-Bo. Preparation of Highly Textured Bi and MnBi Films by the Pulsed Laser Deposition Method[J]. Chin. Phys. Lett., 2015, 32(12): 067501
[7] MALIK Muhammad-Imran, SUN Ying, DENG Si-Hao, SHI Ke-Wen, HU Peng-Wei, WANG Cong. Nitrogen-Induced Change of Magnetic Properties in Antiperovskite-Type Carbide: Mn3InC[J]. Chin. Phys. Lett., 2015, 32(06): 067501
[8] HUI Xi-Dong**, XU Zhi-Yi, WANG En-Rui, CHEN Guo-Liang, LU Zhao-Ping. Excellent Magnetocaloric Effect in Er60Al18Co22 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2010, 27(11): 067501
[9] YANG Yong, XU Cai-Ling, QIAO Liang, Li Xing-Hua, LI Fa-Shen. Microwave Magnetic Properties and Natural Resonance of ε-Co Nanoparticles[J]. Chin. Phys. Lett., 2010, 27(5): 067501
[10] CUI Xin, WANG Jian-Tao, LIANG Xi-Xia, ZHAO Guo-Zhong. Mechanical and Magnetic Properties of Rh and RhH: First-Principles Calculations[J]. Chin. Phys. Lett., 2010, 27(2): 067501
[11] LI Guan-Nan, JIN Ying-Jiu. First-Principles Study on the Half-Metallicity of Half-Heusler Alloys: XYZ (X=Mn, Ni; Y=Cr, Mn; Z=As, Sb)[J]. Chin. Phys. Lett., 2009, 26(10): 067501
[12] LIU Hai-Rui, S. Shamaila, CHEN Jun-Yang, R. Sharif, LU Qing-Feng, HAN Xiu-Feng. Magnetization Reversal Mechanism for CoFeB Ferromagnetic Nanotube Arrays[J]. Chin. Phys. Lett., 2009, 26(7): 067501
[13] ZHAO Zhen-Yu, HAMEAU Sophie, TIGNON Jerome. THz Generation by Optical Rectification and Competition with Other Nonlinear Processes[J]. Chin. Phys. Lett., 2008, 25(5): 067501
[14] WU Xue-Wei, NIU Dong-Lin, LIU Xiao-Jun. Photoinduced Reconstruction of Electronic Structure in Half-Metal CrO2[J]. Chin. Phys. Lett., 2007, 24(12): 067501
[15] LIU Qing-Fang, JIANG Chang-Jun, FAN Xiao-Long, WANG Jian-Bo, XUE De-Sheng. Low-Temperature Magnetic Properties of Co Antidot Array[J]. Chin. Phys. Lett., 2006, 23(6): 067501
Viewed
Full text


Abstract