CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Observation of Giant Topological Hall Effect in Room-Temperature Ferromagnet Cr$_{0.82}$Te |
Wei-Ting Miao1,2, Wei-Li Zhen1*, Zhen Lu1, Heng-Ning Wang1, Jie Wang1, Qun Niu1*, and Ming-Liang Tian1,2,3* |
1Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China 2Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China 3School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
|
|
Cite this article: |
Wei-Ting Miao, Wei-Li Zhen, Zhen Lu et al 2024 Chin. Phys. Lett. 41 067501 |
|
|
Abstract Novel magnetic materials with non-trivial magnetic structures have led to exotic magnetic transport properties and significantly promoted the development of spintronics in recent years. Among them is the Cr$_{x}$Te$_{y}$ family, the magnetism of which can persist above room temperature, thus providing an ideal system for potential spintronic applications. Here we report the synthesis of a new compound, Cr$_{0.82}$Te, which demonstrates a record-high topological Hall effect at room temperature in this family. Cr$_{0.82}$Te displays soft ferromagnetism below the Curie temperature of 340 K. The magnetic measurement shows an obvious magneto-crystalline anisotropy with the easy axis located in the $ab$ plane. The anomalous Hall effect can be well explained by a dominating skew scattering mechanism. Intriguing, after removing the normal Hall effect and anomalous Hall effect, a topological Hall effect can be observed up to 300 K and reaches up to 1.14 $µ\Omega\cdot$cm at 10 K, which is superior to most topological magnetic structural materials. This giant topological Hall effect possibly originates from the noncoplanar spin configuration during the spin flop process. Our work extends a new Cr$_{x}$Te$_{y}$ system with topological non-trivial magnetic structure and broad prospects for spintronics applications in the future.
|
|
Received: 13 March 2024
Published: 20 June 2024
|
|
PACS: |
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
|
|
|
[1] | Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G, and Liu J P 2011 Adv. Mater. 23 821 |
[2] | Slaughter J M 2009 Annu. Rev. Mater. Sci. 39 277 |
[3] | Luo W, Zhu L L, and Zheng X J 2009 Chin. Phys. Lett. 26 117502 |
[4] | Stiles M D and Zangwill A 2002 Phys. Rev. B 66 014407 |
[5] | Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, and Gambardella P 2019 Rev. Mod. Phys. 91 035004 |
[6] | Karube K, White J S, Reynolds N, Gavilano J L, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rønnow H M, Tokura Y, and Taguchi Y 2016 Nat. Mater. 15 1237 |
[7] | Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, and Tokura Y 2010 Nature 465 901 |
[8] | Wang W, Zhao Y F, Wang F, Daniels M W, Chang C Z, Zang J, Xiao D, and Wu W 2021 Nano Lett. 21 1108 |
[9] | Saha R, Meyerheim H L, Göbel B, Hazra B K, Deniz H, Mohseni K, Antonov V, Ernst A, Knyazev D, Bedoya-Pinto A, Mertig I, and Parkin S S P 2015 Nat. Commun. 6 7638 |
[10] | Togawa Y, Koyama T, Takayanagi K, Mori S, Kousaka Y, Akimitsu J, Nishihara S, Inoue K, Ovchinnikov A S, and Kishine J 2012 Phys. Rev. Lett. 108 107202 |
[11] | Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, and Åkerman J 2015 Nat. Commun. 6 8193 |
[12] | Vistoli L, Wang W, Sander A, Zhu Q, Casals B, Cichelero R, Barthélémy A, Fusil S, Herranz G, Valencia S, Abrudan R, Weschke E, Nakazawa K, Kohno H, Santamaria J, Wu W, Garcia V, and Bibes M 2019 Nat. Phys. 15 67 |
[13] | Zhang G, Luo Q, Wen X, Wu H, Yang L, Jin W, Li L, Zhang J, Zhang W, Shu H, and Chang H 2023 Chin. Phys. Lett. 40 117501 |
[14] | Raju M, Petrović A P, Yagil A, Denisov K S, Duong N K, Göbel B, Şaşıoğlu E, Auslaender O M, Mertig I, Rozhansky I V, and Panagopoulos C 2021 Nat. Commun. 12 2758 |
[15] | Liang D, DeGrave J P, Stolt M J, Tokura Y, and Jin S 2015 Nat. Commun. 6 8217 |
[16] | Zhang C, Liu C, Zhang J, Yuan Y, Wen Y, Li Y, Zheng D, Zhang Q, Hou Z, Yin G, Liu K, Peng Y, and Zhang X X 2023 Adv. Mater. 35 2205967 |
[17] | Li S, Kang W, Zhang X, Nie T, Zhou Y, Wang K L, and Zhao W 2021 Mater. Horiz. 8 854 |
[18] | Zhang X C, Zhou Y, Mee Song K, Park T E, Xia J, Ezawa M, Liu X X, Zhao W S, Zhao G P, and Woo S 2020 J. Phys.: Condens. Matter 32 143001 |
[19] | Yang S, Moon K W, Ju T S, Kim C, Kim H J, Kim J, Tran B X, Hong J I, and Hwang C 2021 Adv. Mater. 33 2104406 |
[20] | Huang M, Gao L, Zhang Y, Lei X, Hu G, Xiang J, Zeng H, Fu X, Zhang Z, Chai G, Peng Y, Lu Y, Du H, Chen G, Zang J, and Xiang B 2021 Nano Lett. 21 4280 |
[21] | Zheng X, Zhao X, Qi J, Luo X, Ma S, Chen C, Zeng H, Yu G, Fang N, Rehman S U, Ren W, Li B, and Zhong Z 2021 Appl. Phys. Lett. 118 072402 |
[22] | Dijkstra J, Weitering H H, van Bruggen C F, Haas C, and de Groot R A 1989 J. Phys.: Condens. Matter 1 9141 |
[23] | Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Getaye Sendeku M, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W, and He J 2020 Nano Lett. 20 3130 |
[24] | Wang A, Rahman A, Du Z, Zhao J, Meng F, Liu W, Fan J, Ma C, Ge M, Pi L, Zhang L, and Zhang Y 2023 Phys. Rev. B 108 094429 |
[25] | Zhang L Z, Zhang A L, He X D, Ben X W, Xiao Q L, Lu W L, Chen F, Feng Z, Cao S, Zhang J, and Ge J Y 2020 Phys. Rev. B 101 214413 |
[26] | Zhu W, Ma Z, Yan J, Zheng G, Cheng L, Xu X, Meng Z, Shen L, An K, Zhou C, Qu Z, Luo X, Sun Y, Zhang Z, and Sheng Z 2020 J. Magn. Magn. Mater. 512 167019 |
[27] | Ma X, Huang M, Wang S, Liu P, Zhang Y, Lu Y, and Xiang B 2023 ACS Appl. Electron. Mater. 5 2838 |
[28] | Li C, Liu K, Jiang D, Jin C, Pei T, Wen T, Yue B, and Wang Y 2022 Inorg. Chem. 61 14641 |
[29] | Takagaki M, Kawakami T, Tanaka N, Shirai M, and Motizuki K 1998 J. Phys. Soc. Jpn. 67 1014 |
[30] | Sun S, Liang J, Liu R, Shen W, Wu H, Tian M, Cao L, Yang Y, Huang Z, Lin W, Du J, Ni Z, Xu Y, Chen Q, and Zhai Y 2022 J. Alloys Compd. 890 161818 |
[31] | Shu Z, Wang H, Jo N H, Jozwiak C, Bostwick A, Rotenberg E, Xie W, and Kong T 2023 Phys. Rev. Mater. 7 044406 |
[32] | Liu J, Ding B, Liang J J, Li X, Yao Y, and Wang W H 2022 ACS Nano 16 13911 |
[33] | Hashimoto T and Yamaguchi M 1969 J. Phys. Soc. Jpn. 27 1121 |
[34] | Yan J, Luo X, Lin G, Chen F, Gao J, Sun Y, Hu L, Tong P, Song W, Sheng Z, Lu W, Zhu X, and Sun Y 2018 Europhys. Lett. 124 67005 |
[35] | Zhang X, Liu W, Niu W, Lu Q, Wang W, Sarikhani A, Wu X, Zhu C, Sun J, Vaninger M, Miceli P F, Li J, Singh D J, Hor Y S, Zhao Y, Liu C, He L, Zhang R, Bian G, Yu D, and Xu Y 2022 Adv. Funct. Mater. 32 2202977 |
[36] | Deng Y, Xiang Z, Lei B, Zhu K, Mu H, Zhuo W, Hua X, Wang M, Wang Z, Wang G, Tian M, and Chen X 2022 Nano Lett. 22 9839 |
[37] | Liu Y, Tan H, Hu Z, Yan B, and Petrovic C 2021 Phys. Rev. B 103 045106 |
[38] | Yamada H and Takada S 1972 Prog. Theor. Exp. Phys. 48 1828 |
[39] | Miao W, Zhen W, Tan C, Wang J, Nie Y, Wang H, Wang L, Niu Q, and Tian M 2023 ACS Nano 17 25449 |
[40] | Nagaosa N, Sinova J, Onoda S, MacDonald A H, and Ong N P 2010 Rev. Mod. Phys. 82 1539 |
[41] | Onoda S, Sugimoto N, and Nagaosa N 2008 Phys. Rev. B 77 165103 |
[42] | Miyasato T, Abe N, Fujii T, Asamitsu A, Onoda S, Onose Y, Nagaosa N, and Tokura Y 2007 Phys. Rev. Lett. 99 086602 |
[43] | Huang M, Wang S, Wang Z, Liu P, Xiang J, Feng C, Wang X, Zhang Z, Wen Z, Xu H, Yu G, Lu Y, Zhao W, Yang S A, Hou D, and Xiang B 2021 ACS Nano 15 9759 |
[44] | Purwar S, Low A, Bose A, Narayan A, and Thirupathaiah S 2023 Phys. Rev. Mater. 7 094204 |
[45] | Saha R, Meyerheim H L, Göbel B, Hazra B K, Deniz H, Mohseni K, Antonov V, Ernst A, Knyazev D, Bedoya-Pinto A, Mertig I, and Parkin S S P 2022 Nat. Commun. 13 3965 |
[46] | Nakamura M, Morikawa D, Yu X Z, Kagawa F, Arima T H, Tokura Y, and Kawasaki M 2018 J. Phys. Soc. Jpn. 87 074704 |
[47] | Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, Arima T H, and Tokura Y 2019 Science 365 914 |
[48] | Liu Z H, Burigu A, Zhang Y J, Jafri H M, Ma X Q, Liu E K, Wang W H, and Wu G H 2018 Scr. Mater. 143 122 |
[49] | Sürgers C, Fischer G, Winkel P, and Löhneysen H v 2014 Nat. Commun. 5 3400 |
[50] | Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F, and Tokura Y 2013 Phys. Rev. Lett. 110 117202 |
[51] | Zhang X Q, Ambhire S C, Lu Q S, Niu W, Cook J, Jiang J S, Hong D S, Alahmed L, He L, Zhang R, Xu Y B, Zhang S S L, Li P, and Bian G 2021 ACS Nano 15 15710 |
[52] | Hall A E, Loudon J C, Midgley P A, Twitchett-Harrison A C, Holt S J R, Mayoh D A, Tidey J P, Han Y, Lees M R, and Balakrishnan G 2022 Phys. Rev. Mater. 6 024407 |
[53] | Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, and Zhang X X 2016 Adv. Mater. 28 6887 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|