Chin. Phys. Lett.  2024, Vol. 41 Issue (6): 060301    DOI: 10.1088/0256-307X/41/6/060301
GENERAL |
Non-Hermitian CHSH$^*$ Game with a Single Trapped-Ion Qubit
Xiao Song1†, Teng Liu1†, Ji Bian1, Pengfei Lu1, Yang Liu1,3, Feng Zhu1,2,4*, and Le Luo1,2,3,4*
1School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China
2Shenzhen Research Institute of Sun Yat-Sen University, Shenzhen 518057, China
3Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518048, China
4Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing, Zhuhai 519082, China
Cite this article:   
Xiao Song, Teng Liu, Ji Bian et al  2024 Chin. Phys. Lett. 41 060301
Download: PDF(1174KB)   PDF(mobile)(1262KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Clauser–Horne–Shimony–Holt (CHSH) game provides a captivating illustration of the advantages of quantum strategies over classical ones. In a recent study, a variant of the CHSH game leveraging a single qubit system, referred to as the CHSH$^*$ game, has been identified. We demonstrate that this mapping relationship between these two games remains effective even for a non-unitary gate. Here we delve into the breach of Tsirelson's bound in a non-Hermitian system, predicting changes in the upper and lower bounds of the player's winning probability when employing quantum strategies in a single dissipative qubit system. We experimentally explore the impact of the CHSH$^*$ game on the player's winning probability in a single trapped-ion dissipative system, demonstrating a violation of Tsirelson's bound under the influence of parity-time ($\mathcal{PT}$) symmetry. These results contribute to a deeper understanding of the influence of non-Hermitian systems on quantum games and the behavior of quantum systems under $\mathcal{PT}$ symmetry, which is crucial for designing more robust and efficient quantum protocols.
Received: 04 March 2024      Published: 03 June 2024
PACS:  03.67.-a (Quantum information)  
  37.10.Ty (Ion trapping)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/6/060301       OR      https://cpl.iphy.ac.cn/Y2024/V41/I6/060301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao Song
Teng Liu
Ji Bian
Pengfei Lu
Yang Liu
Feng Zhu
and Le Luo
[1] Bell J S 1966 Rev. Mod. Phys. 38 447
[2] Clauser J F, Horne M A, Shimony A, and Holt R A 1969 Phys. Rev. Lett. 23 880
[3] Wehner S 2006 Phys. Rev. A 73 022110
[4] Henaut L, Catani L, Browne D E, Mansfield S, and Pappa A 2018 Phys. Rev. A 98 060302
[5] Tian Z Y, Zhao Y Y, Wu H, Wang Z, and Luo L 2020 Sci. Chin. Inf. Sci. 63 180506
[6] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A, and Wootters W K 1996 Phys. Rev. Lett. 76 722
[7] Bennett C H, Bernstein H J, Popescu S, and Schumacher B 1996 Phys. Rev. A 53 2046
[8] Lee Y C, Hsieh M H, Flammia S T, and Lee R K 2014 Phys. Rev. Lett. 112 130404
[9] Tang J S, Wang Y T, Yu S, He D Y, Xu J S, Liu B H, Chen G, Sun Y N, Sun K, Han Y J, Li C F, and Guo G C 2016 Nat. Photonics 10 642
[10] Lu P F, Liu T, Liu Y, Rao X X, Lao Q F, Wu H, Zhu F, and Luo L 2024 New J. Phys. 26 013043
[11] Chefles A 1998 Phys. Lett. A 239 339
[12] Huang M Y and Lee R K 2022 Phys. Rev. A 105 052210
[13] Bagchi B and Barik S 2020 Mod. Phys. Lett. A 35 2050090
[14] Wang Q, Xu L, and He Z 2020 Laser Phys. 30 125203
[15] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[16] Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C, and Xue P 2017 Nat. Phys. 13 1117
[17] Li J M, Harter A K, Liu J, de Melo L, Joglekar Y N, and Luo L 2019 Nat. Commun. 10 855
[18] Ding L Y, Shi K Y, Zhang Q X, Shen D N, Zhang X, and Zhang W 2021 Phys. Rev. Lett. 126 083604
[19] Bian J, Lu P F, Liu T, Wu H, Rao X X, Wang K X, Lao Q F, Liu Y, Zhu F, and Luo L 2023 Fundam. Res. 3 904
[20] Li T Y, Zhang Y S, and Yi W 2021 Chin. Phys. Lett. 38 030301
[21] Jin L and Song Z 2021 Chin. Phys. Lett. 38 024202
[22] Bruzewicz C D, Chiaverini J, McConnell R, and Sage J M 2019 Appl. Phys. Rev. 6 021314
[23] Lu P F, Rao X X, Liu T, Liu Y, Bian J, Zhu F, and Luo L 2024 Phys. Rev. A 109 042205
[24] Brody D C and Graefe E M 2012 Phys. Rev. Lett. 109 230405
[25] Wu C W, Zhang M C, Zhou Y L et al. 2023 arXiv:2304.06590 [quant-ph]
Related articles from Frontiers Journals
[1] Dai-Qiang Huang, Yang Wang, He Wang, Jian Wang, and Yang Liu. Magneto-optic Kerr Effect Measurement of TbMn$_{6}$Sn$_{6}$ at mK Temperature[J]. Chin. Phys. Lett., 2024, 41(4): 060301
[2] Zheng-Rong Liu, Rui Chen, and Bin Zhou. Tuning Second Chern Number in a Four-Dimensional Topological Insulator by High-Frequency Time-Periodic Driving[J]. Chin. Phys. Lett., 2024, 41(4): 060301
[3] Shi-Lei Su, Chen Wang, P.-Y. Song, and Gang Chen. Nonadiabatic Holonomic Quantum Computation Based on Rydberg Ground State Blockade[J]. Chin. Phys. Lett., 2024, 41(4): 060301
[4] Jianwen Xu, Yujia Zhang, Wen Zheng, Haoyang Cai, Haoyu Zhou, Xianke Li, Xudong Liao, Yu Zhang, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Balancing the Quantum Speed Limit and Instantaneous Energy Cost in Adiabatic Quantum Evolution[J]. Chin. Phys. Lett., 2024, 41(4): 060301
[5] Zhengping Yang, Wei-Ping Zhong, and Milivoj Belić. Dark Localized Waves in Shallow Waters: Analysis within an Extended Boussinesq System[J]. Chin. Phys. Lett., 2024, 41(4): 060301
[6] Yiwen Han and Wei Yi. Tuning Excitation Transport in a Dissipative Rydberg Ring[J]. Chin. Phys. Lett., 2024, 41(3): 060301
[7] Bo Li, Xu-Tao Zeng, Qianhui Xu, Fan Yang, Junsen Xiang, Hengyang Zhong, Sihao Deng, Lunhua He, Juping Xu, Wen Yin, Xingye Lu, Huiying Liu, Xian-Lei Sheng, and Wentao Jin. C-Type Antiferromagnetic Structure of Topological Semimetal CaMnSb$_2$[J]. Chin. Phys. Lett., 2024, 41(3): 060301
[8] Pan-Pan Shi, Vadim Baru, Feng-Kun Guo, Christoph Hanhart, and Alexey Nefediev. Production of the $X(4014)$ as the Spin-2 Partner of $X(3872)$ in $e^+e^-$ Collisions[J]. Chin. Phys. Lett., 2024, 41(3): 060301
[9] Jianzhi Chen, Aoqian Shi, Yuchen Peng, Peng Peng, and Jianjun Liu. Hybrid Skin-Topological Effect Induced by Eight-Site Cells and Arbitrary Adjustment of the Localization of Topological Edge States[J]. Chin. Phys. Lett., 2024, 41(3): 060301
[10] Xiao-Yun Wang, Chen Dong, and Xiang Liu. Analysis of Strong Coupling Constant with Machine Learning and Its Application[J]. Chin. Phys. Lett., 2024, 41(3): 060301
[11] Qi-Hang Yu and Zi-Jing Lin. Solving Quantum Many-Particle Models with Graph Attention Network[J]. Chin. Phys. Lett., 2024, 41(3): 060301
[12] Ke-Fan Wu, Hu Zhang, and Gui-Hua Tang. Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab[J]. Chin. Phys. Lett., 2024, 41(3): 060301
[13] John Paul Strachan. Unleashing the Power of Moiré Materials in Neuromorphic Computing[J]. Chin. Phys. Lett., 2023, 40(12): 060301
[14] Chang Niu and Sixia Yu. Wave-Particle Duality via Quantum Fisher Information[J]. Chin. Phys. Lett., 2023, 40(11): 060301
[15] Xiaozhou Pan, Pengtao Song, and Yvonne Y. Gao. Continuous-Variable Quantum Computation in Circuit QED[J]. Chin. Phys. Lett., 2023, 40(11): 060301
Viewed
Full text


Abstract