Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 055201    DOI: 10.1088/0256-307X/41/5/055201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Experimental Investigations of Quasi-Coherent Micro-Instabilities in J-TEXT Ohmic Plasmas
Peng Shi1,2, G. Zhuang3, Zhifeng Cheng2, Li Gao2, Yinan Zhou2, Yong Liu4, J. T. Luo4, and Jingchun Li4*
1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
2International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3Department of Engineering and Applied Physics School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
4Shenzhen Key Laboratory of Nuclear and Radiation Safety, Institute for Advanced Study in Nuclear Energy & Safety, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 510640, China
Cite this article:   
Peng Shi, G. Zhuang, Zhifeng Cheng et al  2024 Chin. Phys. Lett. 41 055201
Download: PDF(1034KB)   PDF(mobile)(1062KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quasi-coherent micro-instabilities is one of the key topics of magnetic confinement fusion. This work focuses on the quasi-coherent spectra of ion temperature gradient (ITG) and trapped-electron-mode instabilities using newly developed far-forward collective scattering measurements within ohmic plasmas in the J-TEXT tokamak. The ITG mode is characterized by frequencies ranging from 30 to 100 kHz and wavenumbers ($k_{\theta}\rho_{\rm s})$ less than 0.3. Beyond a critical plasma density threshold, the ITG mode undergoes a bifurcation, which is marked by a reduction in frequency and an enhancement in amplitude. Concurrently, enhancements in ion energy loss and degradation in confinement are observed. This ground-breaking discovery represents the first instance of direct experimental evidence that establishes a clear link between ITG instability and ion thermal transport.
Received: 01 November 2023      Published: 15 May 2024
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.25.Xz (Magnetized plasmas)  
  52.35.Ra (Plasma turbulence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/055201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/055201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peng Shi
G. Zhuang
Zhifeng Cheng
Li Gao
Yinan Zhou
Yong Liu
J. T. Luo
and Jingchun Li
[1] Garbet X, Mantica P, Angioni C et al. 2004 Plasma Phys. Control. Fusion 46 B557
[2] Bourdelle C 2005 Plasma Phys. Control. Fusion 47 A317
[3] Wan B and EAST team 2020 Chin. Phys. Lett. 37 045202
[4] Hu W, Feng H Y, and Zhang W L 2019 Chin. Phys. Lett. 36 085201
[5] Cowley S C, Kulsrud R M, and Sudan R 1991 Phys. Fluids B 3 2767
[6] Horton W 1999 Rev. Mod. Phys. 71 735
[7] Dimits A M, Williams T J, Byers J A, and Cohen B I 1996 Phys. Rev. Lett. 77 71
[8] Horton W, Lindberg D, Kim J Y, Dong J Q, Hammett G W, Scott S D, Zarnstorff M C, and Hamaguchi S 1992 Phys. Fluids B 4 953
[9] Li J, Xu J Q, Qu Y R, Lin Z, Dong J Q, Peng X D, and Li J Q 2023 Nucl. Fusion 63 096005
[10] Li J C, Dong J Q, and Liu S F 2020 Plasma Sci. Technol. 22 055101
[11] Brower D L, Peebles W A, Kim S K, Luhmann Jr N C, Tang W M, and Phillips P E 1987 Phys. Rev. Lett. 59 48
[12] Rettig C L, Staebler G M, Rhodes T L, Doyle E J, Peebles W A, and Burrell K H 2001 Plasma Phys. Control. Fusion 43 1273
[13] Brower D L, Redi M H, Tang W M et al. 1989 Nucl. Fusion 29 1247
[14] Rettig C L, Rhodes T L, Leboeuf J N, Peebles W A, Doyle E J, Staebler G M, Burrell K H, and Moyer R A 2001 Phys. Plasmas 8 2232
[15] Vershkov V A, Shelukhin D A, Soldatov S V et al. 2005 Nucl. Fusion 45 S203
[16] Arnichand H, Sabot R, Hacquin S et al. 2014 Nucl. Fusion 54 123017
[17] Krämer-Flecken A, Dreval V, Soldatov S et al. 2004 Nucl. Fusion 44 1143
[18] Zhong W L, Shi Z B, Yang Z J, Xiao G L, Yang Z C, Zhang B Y, Shi P W, Du H R, Pan X M, Zhou R B, Wan L H, Zou X L, Xu M, Duan X R, Liu Y, Zhuang G, HL-2A Team, and J-TEXT Team 2016 Phys. Plasmas 23 060702
[19] Shi P, Chen J, Gao L, Liu Y, Liu H, Zhou Y N, and Zhuang G 2016 Rev. Sci. Instrum. 87 11E110
[20] Zhuang G, Pan Y, Hu X W, Wang Z J, Ding Y H, Zhang M, Gao L, Zhang X Q, Yang Z J, Yu K X, Gentle K W, Huang H, and J-TEXT Team 2011 Nucl. Fusion 51 094020
[21] Zhuang G, Liu Y, Chen J, Gao L, Li Q, Xiong C Y, Shi P, and Zhou Y N 2016 J. Instrum. 11 C02026
[22] Brower D L, Peebles W A, Kim S K, and Luhmann Jr N C 1988 Rev. Sci. Instrum. 59 1559
[23] Cheng Z F, Luo J, Wang Z J, Zhang Z P, Zhang X L, Hou S Y, Cheng C, Li Z, and Zhuang G 2014 Rev. Sci. Instrum. 85 11E423
[24] Weiland J and Nordman H 1991 Nucl. Fusion 31 390
[25] Shi P, Qiu Q S, Zhuang G, Gao L, Zhou Y N, and Zhou C X 2018 Rev. Sci. Instrum. 89 10C110
[26]Shimomura Y, Suzuki N, Sugihara M, Tsuda T, Odajima K, and Tsunematsu T 1985 Japanese Atomic Energy Research Institute Report JAERI-M-85-080
[27] Chen J, Zhuang G, Jian X, Li Q, Liu Y, Gao L, and Wang Z J 2014 Rev. Sci. Instrum. 85 103501
[28] Sen A K, Chen J, and Mauel M 1991 Phys. Rev. Lett. 66 429
[29] Shen Y C, Lyu B, Wang F D, Shi Y J, Wu B, Li Y Y, Fu J, and Wan B N 2016 Chin. Phys. Lett. 33 065205
[30] Li J C, Dong J Q, Ji X Q, and Hu Y J 2021 Chin. Phys. B 30 075203
[31] Li J C, Gong X Y, Dong J Q, Wang J, and Yin L 2016 Chin. Phys. B 25 045201
Related articles from Frontiers Journals
[1] Haoyu Wang, Zheng-Xiong Wang, Tong Liu, and Xiao-Long Zhu. Effects of Plasma Boundary Shape on Explosive Bursts Triggered by Tearing Mode in Toroidal Tokamak Plasmas with Reversed Magnetic Shear[J]. Chin. Phys. Lett., 2023, 40(7): 055201
[2] Longwen Yan, Jinming Gao, Xianggan Miao, Zhihui Huang, Na Wu, Wenjin Chen, Ting Wu, Weice Wang, Liang Liu, Xiaoxue He, Kaiyang Yi, Yu He, Lin Nie, Zhongbing Shi, and Wulv Zhong. Scaling Laws of Heat Flux Width in the HL-2A Closed Divertor Tokamak[J]. Chin. Phys. Lett., 2022, 39(11): 055201
[3] Chang Jiang, Chao Dong, and Ding Li. Transverse Rutherford Scattering of Electron-Ion Collision in a Uniformly Magnetized Plasma[J]. Chin. Phys. Lett., 2022, 39(2): 055201
[4] Ming Xu, Guoqiang Zhong, Baolong Hao, Wei Shen, Liqun Hu, Wei Chen, Zhiyong Qiu, Xuexi Zhang, Youjun Hu, Yingying Li, Hailin Zhao, Haiqing Liu, Bo Lyu, and the EAST Team. Excitation of RSAEs during Sawteeth-Like Oscillation in EAST[J]. Chin. Phys. Lett., 2021, 38(8): 055201
[5] Liming Yu, Wei Chen, Xiaoquan Ji, Peiwan Shi, Xuantong Ding, Zhongbing Shi, Ruirui Ma, Yumei Hou, Yonggao Li, Jiaxian Li, Jianyong Cao, Wulyu Zhong, Min Xu, and Xuru Duan. Observation of Multiple Broadband Alfvénic Chirping Modes in HL-2A NBI Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 055201
[6] Feng Wang , Rui Zhao , Zheng-Xiong Wang, Yue Zhang , Zhan-Hong Lin , Shi-Jie Liu , and CFETR Team. PTC: Full and Drift Particle Orbit Tracing Code for $\alpha$ Particles in Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 055201
[7] Tong Liu , Lai Wei , Feng Wang, and Zheng-Xiong Wang . Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 055201
[8] Hao Shi, Wenlu Zhang, Chao Dong, Jian Bao, Zhihong Lin, Jintao Cao, and Ding Li. Temperature Gradient, Toroidal and Ion FLR Effects on Drift-Tearing Modes[J]. Chin. Phys. Lett., 2020, 37(8): 055201
[9] Wei Hu, Hong-Ying Feng, Wen-Lu Zhang. Comparison of ITG and TEM Microturbulence in DIII–D Tokamak[J]. Chin. Phys. Lett., 2019, 36(8): 055201
[10] Yan-Bin Wu, Tian-Yang Xia, Fang-Chuan Zhong, Bin Gui, EAST Team. Impact of Sheath Boundary Conditions and Magnetic Flutter on Evolution and Distribution of Transient Particle and Heat Fluxes in the Edge-Localized Mode Burst by Experimental Advanced Superconducting Tokamak Simulation[J]. Chin. Phys. Lett., 2019, 36(4): 055201
[11] Wei Hu, Hong-Ying Feng, Chao Dong. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas[J]. Chin. Phys. Lett., 2018, 35(10): 055201
[12] Wen Yang, Ding Li, Xue-qiao Xu. Effect of Hyper-Resistivity on Nonlinear Tearing Modes[J]. Chin. Phys. Lett., 2018, 35(6): 055201
[13] Jing-Bo Lin, Wen-Lu Zhang, Peng-Fei Liu, Chao Dong, Jin-Tao Cao, Ding Li. Particle Trajectory Integrator in Guiding Center Phase Space[J]. Chin. Phys. Lett., 2018, 35(2): 055201
[14] Zhong-Chao Sun, Zi-Wei Lian, Wei-Na Qiao, Jian-Gang Yu, Wen-Jia Han, Qing-Wei Fu, Kai-Gui Zhu. Microstructure and Deuterium Retention of Tungsten Deposited by Hollow Cathode Discharge in Deuterium Plasma[J]. Chin. Phys. Lett., 2017, 34(12): 055201
[15] Bo Shi, Zhen-Dong Yang, Bin Zhang, Cheng Yang, Kai-Fu Gan, Mei-Wen Chen, Jin-Hong Yang, Hui Zhang, Jun-Li Qi, Xian-Zu Gong, Xiao-Dong Zhang, Wei-Hua Wang. Heat Flux on EAST Divertor Plate in H-mode with LHCD/LHCD+NBI[J]. Chin. Phys. Lett., 2017, 34(9): 055201
Viewed
Full text


Abstract