FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
High-Power Raman Soliton Generation at 1.7 μm in All-Fiber Polarization-Maintaining Erbium-Doped Amplifier |
Zi-Peng Xu, Xuan Wang, Chuan-Fei Yao*, Lin-Jing Yang, and Ping-Xue Li* |
Institute of Ultrashort Pulsed Laser and Application, Beijing University of Technology, Beijing 100124, China |
|
Cite this article: |
Zi-Peng Xu, Xuan Wang, Chuan-Fei Yao et al 2024 Chin. Phys. Lett. 41 054201 |
|
|
Abstract An all-fiber polarization maintaining high-power laser system operating at 1.7 µm based on the Raman-induced soliton self-frequency shifting effect is demonstrated. The entirely fiberized system is built by erbium-doped oscillator and two-stage amplifiers with polarization maintaining commercial silica fibers and devices, which can provide robust and stable soliton generation. High-power soliton laser with the average power of 0.28 W, the repetition rate of 42.7 MHz, and pulse duration of 515 fs is generated directly from the main amplifier. Our experiment provides a feasible method for high-power all-fiber polarization maintaining femtosecond laser generation working at 1.7 µm.
|
|
Received: 23 February 2024
Published: 15 May 2024
|
|
PACS: |
42.55.Wd
|
(Fiber lasers)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
|
|
|
[1] | Alzeeb G, Dubreuil M, Arzur D et al. 2022 Biomed. Opt. Express 13 3120 |
[2] | Lee M, Kannan S, Muniraj G et al. 2022 Tissue Eng. Part B-Rev. 28 926 |
[3] | Xiao Y J, Deng P, Zhao Y G et al. 2023 Front. Neurosci.-SWITZ 17 1085682 |
[4] | Qin M Y et al. 2023 J. Biophotonics 16 e202200365 |
[5] | Guo Y, Wang L W, Luo Z Y et al. 2023 Molecules 28 4936 |
[6] | Benkowska-Biernacka D, Mucha S G, Firlej L et al. 2023 ACS Appl. Mater. & Interfaces 15 32717 |
[7] | Li L H, Huang X X, Zhang S C et al. 2023 BMC Cancer 23 38 |
[8] | Wang K, Pan Y, Tong S et al. 2021 Biomed. Opt. Express 12 6474 |
[9] | Chen J X, Zhan Z Y, Li C et al. 2021 Opt. Lett. 46 5922 |
[10] | Wang K, Horton N G, Charan K, and Xu C 2014 IEEE J. Sel. Top. Quantum Electron. 20 6800311 |
[11] | Li B, Wang M R, Charan K et al. 2018 Opt. Express 26 19637 |
[12] | Gan M Y, He C, Liu H J et al. 2019 J. Biophotonics 12 e201900069 |
[13] | Cheng H, Zhong J C, Qiu P, and Wang K 2024 J. Innov. Opt. Heal. Sci. 17 2350011 |
[14] | Anashkina E A, Andrianov A V, Koptev M Y et al. 2012 Opt. Express 20 27102 |
[15] | Ruan Q J et al. 2017 IEEE Photonics J. 9 7100807 |
[16] | Fang X, Wang Z Q, and Zhan L 2017 Opt. Eng. 56 046107 |
[17] | Stachowiak D, Marzejon M, Bogusławski J et al. 2022 Biomed. Opt. Express 13 1899 |
[18] | He X, Lin Q M, Guo H Y et al. 2019 Appl. Phys. Express 12 072007 |
[19] | Nicholson J W, Desantolo A, Kaenders W, and Zach A 2016 Opt. Express 24 23396 |
[20] | Nicholson J W, Ahmad R, DeSantolo A, and Várallyay Z 2017 J. Opt. Soc. Am. B 34 A1 |
[21] | Hekmat M J, Omoomi M, Gholami A et al. 2018 Appl. Phys. B 124 4 |
[22] | Chen X W, Lin W, Wang W L et al. 2021 Opt. Lett. 46 1872 |
[23] | Wang M X, Li P X, Xu Y T et al. 2022 Chin. Phys. Lett. 39 024201 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|