Chin. Phys. Lett.  2024, Vol. 41 Issue (4): 047503    DOI: 10.1088/0256-307X/41/4/047503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Pressure-Tuned Intrinsic Anomalous Hall Conductivity in Kagome Magnets $R$V$_{6}$Sn$_{6}$ ($R$ = Gd, Tb)
Xiangming Kong1,2†, Zicheng Tao3,4†, Rui Zhang5*, Wei Xia3,4, Xu Chen6, Cuiying Pei3, Tianping Ying6, Yanpeng Qi3,4,7, Yanfeng Guo3,4, Xiaofan Yang1,5*, and Shiyan Li1,2,8*
1State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200438, China
2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
3School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
4ShanghaiTech Laboratory for Topological Physics, Shanghai 201210, China
5Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
6Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
7Shanghai Key Laboratory of High-resolution Electron Microscopy, Shanghai 201210, China
8Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Cite this article:   
Xiangming Kong, Zicheng Tao, Rui Zhang et al  2024 Chin. Phys. Lett. 41 047503
Download: PDF(4056KB)   PDF(mobile)(4526KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Exploration of exotic phenomena in magnetic topological systems is at the frontier of condensed matter physics, holding a significant promise for applications in topological spintronics. However, complex magnetic structures carrying nontrivial topological properties hinder its progresses. Here, we investigate the pressure effect on the novel topological kagome magnets GdV$_{6}$Sn$_{6}$ and TbV$_{6}$Sn$_{6}$ to dig out the interplay between magnetic Gd/Tb layers and nonmagnetic V-based kagome sublattice. The pressure-tuned magnetic transition temperature $T_{\rm m}$ in both the compounds exhibit a turning point at the critical pressure $P_{\rm c}$, accompanied with a sign reversal in anomalous Hall effect (AHE). The separation of intrinsic and extrinsic contributions using the Tian–Ye–Jin scaling model suggests that the intrinsic mechanism originating from the electronic Berry curvature holds the priority in the competition with extrinsic mechanism in AHE. The above-mentioned findings can be attributed to the combined effect of pressure-tuned band topology and magnetic interaction in segregated layers. Our results provide a practical route to design and manipulate the intrinsic AHE in magnetic topological materials.
Received: 28 February 2024      Published: 11 April 2024
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  72.15.-v (Electronic conduction in metals and alloys)  
  71.20.Be (Transition metals and alloys)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/4/047503       OR      https://cpl.iphy.ac.cn/Y2024/V41/I4/047503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiangming Kong
Zicheng Tao
Rui Zhang
Wei Xia
Xu Chen
Cuiying Pei
Tianping Ying
Yanpeng Qi
Yanfeng Guo
Xiaofan Yang
and Shiyan Li
[1] Yin J X, Lian B, and Hasan M Z 2022 Nature 612 647
[2] Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, and Checkelsky J G 2018 Nature 555 638
[3] Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, and Nakatsuji S 2017 Nat. Mater. 16 1090
[4] Morali N, Batabyal R, Nag P K, Liu E K, Xu Q N, Sun Y, Yan B H, Felser C, Avraham N, and Beidenkopf H 2019 Science 365 1286
[5] Yin J X, Ma W, Cochran T A, Xu X T, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S, and Hasan M Z 2022 Nature 583 533
[6] Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z, Neupert T, Jia S, Lei H, and Hasan M Z 2019 Nat. Phys. 15 443
[7] Teng X K, Chen L B, Ye F, Rosenberg E, Liu Z Y, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y F, Hashimoto M, Lu D H, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M, and Dai P C 2022 Nature 609 490
[8] Neupert T, Denner M M, Yin J X, Thomale R, and Hasan M Z 2021 Nat. Phys. 18 137
[9] Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X, and Hu J 2023 Natl. Sci. Rev. 10 nwac199
[10] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M A, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F, and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[11] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J Y, Hossain M S, Liu X X, Ruff J, Kautzsch L, Zhang S S, Chang G Q, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z Q, Thomale R, Neupert T, Wilson S D, and Hasan M Z 2021 Nat. Mater. 20 1353
[12] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, and Zeljkovic I 2021 Nature 599 216
[13] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z, and Gao H J 2021 Nature 599 222
[14] Zheng L, Wu Z, Yang Y, Nie L, Shan M, Sun K, Song D, Yu F, Li J, Zhao D, Li S, Kang B, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T, and Chen X 2022 Nature 611 682
[15] Zhong Y G, Liu J J, Wu X X, Guguchia Z, Yin J X, Mine A, Li Y, Najafzadeh S, Das D, Mielke III C, Khasanov R, Luetkens H, Suzuki T, Liu K, Han X, Kondo T, Hu J, Shin S, Wang Z, Shi X, Yao Y, and Okazaki K 2023 Nature 617 488
[16] Li H X, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J, and Miao H 2021 Phys. Rev. X 11 031050
[17] Luo Y, Han Y L, Liu J J, Chen H, Huang Z H, Huai L W, Li H Y, Wang B Q, Shen J C, Ding S H, Li Z Y, Peng S T, Wei Z Y, Miao Y, Sun X P, Ou Z P, Xiang Z J, Hashimoto M, Lu D H, Yao Y G, Yang H T, Chen X H, Gao H J, Qiao Z H, Wang Z W, and He J F 2023 Nat. Commun. 14 3819
[18] Wang Y J, Yang S Y, Sivakumar P K, Ortiz B R, Teicher S M L, Wu H, Srivastava A K, Garg C, Liu D F, Parkin S S P, Toberer E S, McQueen T, Wilson S D, and Ali M N 2023 Sci. Adv. 9 eadg7269
[19] Song B Q, Ying T P, Wu X X, Xia W, Yin Q W, Zhang Q H, Song Y P, Yang X F, Guo J G, Gu L, Chen X L, Hu J P, Schnyder A P, Lei H C, Guo Y F, and Li S Y 2023 Nat. Commun. 14 2492
[20] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P, and Cheng J G 2021 Phys. Rev. Lett. 126 247001
[21] Kida T, Fenner L A, Dee A A, Terasaki I, Hagiwara M, and Wills A S 2011 J. Phys.: Condens. Matter 23 112205
[22] Nakatsuji S, Kiyohara N, and Higo T 2015 Nature 527 212
[23] Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kübler J, Felser C, and Parkin S S P 2016 Sci. Adv. 2 e1501870
[24] Chen T S, Tomita T, Minami S, Fu M X, Koretsune T, Kitatani M, Muhammad I, Nishio-Hamane D, Ishii R, Ishii F, Arita R, and Nakatsuji S 2021 Nat. Commun. 12 572
[25] Gao L L, Shen S W, Wang Q, Shi W J, Zhao Y, Li C H, Cao W Z, Pei C Y, Ge J Y, Li G, Li J, Chen Y L, Yan S C, and Qi Y P 2021 Appl. Phys. Lett. 119 092405
[26] Ma W L, Xu X T, Yin J X, Yang H, Zhou H B, Cheng Z J, Huang Y Q, Qu Z, Wang F, Hasan M Z, and Jia S 2021 Phys. Rev. Lett. 126 246602
[27] Gao L L, Lai J W, Chen D, Pei C Y, Wang Q, Zhao Y, Li C, Cao W, Wu J, Chen Y, Chen X, Sun Y, Felser C, and Qi Y P 2023 arXiv:2307.03931 [cond-mat.mtrl-sci]
[28] Liu E K, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B, and Felser C 2018 Nat. Phys. 14 1125
[29] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C, and Lei H C 2018 Nat. Commun. 9 3681
[30] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, Gonzalez-Hernandez R, Šmejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T, and Ali M N 2020 Sci. Adv. 6 eabb6003
[31] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, and Chen X H 2021 Phys. Rev. B 104L041103
[32] Asaba T, Onishi A, Kageyama Y, Kiyosue T, Ohtsuka K, Suetsugu S, Kohsaka Y, Gaggl T, Kasahara Y, Murayama H, Hashimoto H, Tazai R, Kontani H, Ortiz B R, Wilson S D, Li Q, Wen H H, Shibauchi T, and Matsuda Y 2024 Nat. Phys. 20 40
[33] Li H, Zhao H, Ortiz B R, Park T, Ye M, Balents L, Wang Z, Wilson S D, and Zeljkovic I 2022 Nat. Phys. 18 265
[34] Li H Z, Wan S Y, Li H, Li Q, Gu Q Q, Yang H, Li Y K, Wang Z W, Yao Y G, and Wen H H 2022 Phys. Rev. B 105 045102
[35] Mielke III C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H, and Guguchia Z 2022 Nature 602 245
[36] Yu L, Wang C N, Zhang Y H, Sander M, Ni S, Lu Z, Ma S, Wang Z, Zhao Z, Chen H, Jiang K, Zhang Y, Yang H, Zhou F, Dong X, Johnson S L, Graf M J, Hu J, Gao H J, and Zhao Z X 2021 arXiv:2107.10714 [cond-mat.supr-con]
[37] Pokharel G, Teicher S M L, Ortiz B R, Sarte P M, Wu G, Peng S, He J, Seshadri R, and Wilson S D 2021 Phys. Rev. B 104 235139
[38] Lee J and Mun E 2022 Phys. Rev. Mater. 6 083401
[39] Zhang X X, Liu Z Y, Cui Q, Guo Q, Wang N N, Shi L F, Zhang H, Wang W H, Dong X L, Sun J P, Dun Z L, and Cheng J G 2022 Phys. Rev. Mater. 6 105001
[40] Arachchige H W S, Meier W R, Marshall M, Matsuoka T, Xue R, McGuire M A, Hermann R P, Cao H, and Mandrus D 2022 Phys. Rev. Lett. 129 216402
[41] Cao S Z, Xu C C, Fukui H, Manjo T, Dong Y, Shi M, Liu Y, Cao C, and Song Y 2023 Nat. Commun. 14 7671
[42] Gu Y H, Ritz E T, Meier W R, Blockmon A, Smith K, Madhogaria R P, Mozaffari S, Mandrus D, Birol T, and Musfeldt J L 2023 npj Quantum Mater. 8 58
[43] Hu Y, Ma J Z, Li Y X, Jiang Y X, Gawryluk D J, Hu T, Teyssier J, Multian V, Yin Z, Xu S, Shin S, Plokhikh I, Han X, Plumb N C, Liu Y, Yin J, Guguchia Z, Zhao Y, Schnyder A P, Wu X, Pomjakushina E, Hasan M Z, Wang N L, and Shi M 2024 Nat. Commun. 15 1658
[44] Hu T C, Pi H Q, Xu S X, Yue L, Wu Q, Liu Q M, Zhang S J, Li R S, Zhou X Y, Yuan J Y, Wu D, Dong T, Weng H M, and Wang N L 2023 Phys. Rev. B 107 165119
[45] Tan H X and Yan B H 2023 Phys. Rev. Lett. 130 266402
[46] Lee S, Won C, Kim J, Yoo J, Park S, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Comin R, Kang M, and Park J H 2024 npj Quantum Mater. 9 15
[47] Cheng S Y, Ren Z, Li H, Oh J S, Tan H, Pokharel G, DeStefano J M, Rosenberg E, Guo Y, Zhang Y, Yue Z, Lee Y, Gorovikov S, Zonno M, Hashimoto M, Lu D, Ke L, Mazzola F, Kono J, Birgeneau R J, Chu J W, Wilson S D, Wang Z, Yan B, Yi M, and Zeljkovic I 2024 npj Quantum Mater. 9 14
[48] Guguchia Z, Gawryluk D J, Shin S, Hao Z, Mielke III C, Das D, Plokhikh I, Liborio L, Shenton J K, Hu Y, Sazgari V, Medarde M, Deng H, Cai Y, Chen C, Jiang Y, Amato A, Shi M, Hasan M Z, Yin J X, Khasanov R, Pomjakushina E, and Luetkens H 2023 Nat. Commun. 14 7796
[49] Guo K Z, Ye J Y, Guan S Y, and Jia S 2023 Phys. Rev. B 107 205151
[50] Peng S T, Han Y L, Pokharel G, Shen J C, Li Z Y, Hashimoto M, Lu D H, Ortiz B R, Luo Y, Li H C, Guo M Y, Wang B Q, Cui S T, Sun Z, Qiao Z H, Wilson S D, and He J F 2021 Phys. Rev. Lett. 127 266401
[51] Hu Y, Wu X X, Yang Y Q, Gao S Y, Plumb N C, Schnyder A P, Xie W W, Ma J Z, and Shi M 2022 Sci. Adv. 8 eadd2024
[52] Ding J Y, Zhao N N, Tao Z C, Huang Z, Jiang Z C, Yang Y C, Cho S, Liu Z T, Liu J S, Guo Y F, Liu K, Liu Z H, and Shen D W 2023 J. Phys.: Condens. Matter 35 405502
[53] Pokharel G, Ortiz B, Chamorro J, Sarte P, Kautzsch L, Wu G, Ruff J, and Wilson S D 2022 Phys. Rev. Mater. 6 104202
[54] Rosenberg E, DeStefano J M, Guo Y C, Oh J S, Hashimoto M, Lu D H, Birgeneau R J, Lee Y, Ke L Q, Yi M, and Chu J H 2022 Phys. Rev. B 106 115139
[55] Porter Z, Pokharel G, Kim J W, Ryan P J, and Wilson S D 2023 Phys. Rev. B 108 035134
[56] Ishikawa H, Yajima T, Kawamura M, Mitamura H, and Kindo K 2021 J. Phys. Soc. Jpn. 90 124704
[57] Liu Z Y, Zhang T, Xu S X, Yang P T, Wang Q, Lei H C, Sui Y, Uwatoko Y, Wang B S, Weng H M, Sun J P, and Cheng J G 2020 Phys. Rev. Mater. 4 044203
[58] Chen X L, Wang M Y, Gu C C, Wang S Y, Zhou Y H, An C, Zhou Y, Zhang B W, Chen C H, Yuan Y F, Qi M Y, Zhang L L, Zhou H D, Zhou J H, Yao Y G, and Yang Z R 2019 Phys. Rev. B 100 165145
[59] Mielke III C, Ma W L, Pomjakushin V, Zaharko O, Sturniolo S, Liu X, Ukleev V, White J S, Yin J X, Tsirkin S S, Larsen C B, Cochran T A, Medarde M, Porée V, Das D, Gupta R, Wang C N, Chang J, Wang Z Q, Khasanov R, Neupert T, Amato A, Liborio L, Jia S, Hasan M Z, Luetkens H, and Guguchia Z 2022 Commun. Phys. 5 107
[60] Birch F 1947 Phys. Rev. 71 809
[61] Nagaosa N, Sinova J, Onoda S, MacDonald A H, and Ong N P 2010 Rev. Mod. Phys. 82 1539
[62] Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959
[63] Tian Y, Ye L, and Jin X F 2009 Phys. Rev. Lett. 103 087206
[64] Hou D Z, Su G, Tian Y, Jin X F, Yang S A, and Niu Q 2015 Phys. Rev. Lett. 114 217203
[65] Shen J L, Yao Q S, Zeng Q Q, Sun H Y, Xi X K, Wu G H, Wang W H, Shen B G, Liu Q H, and Liu E K 2020 Phys. Rev. Lett. 125 086602
[66] Shen J L, Zhang S, Liang T T, Wang J, Zeng Q Q, Wang Y B, Wei H X, Liu E K, and Xu X H 2022 APL Mater. 10 090705
[67] Zhou H B, Chang G Q, Wang G Q, Gui X, Xu X T, Yin J X, Guguchia Z, Zhang S S, Chang T R, Lin H, Xie W W, Hasan M Z, and Jia S 2020 Phys. Rev. B 101 125121
[68] Shen J L, Zeng Q Q, Zhang S, Sun H Y, Yao Q, Xi X, Wang W, Wu G, Shen B, Liu Q, and Liu E K 2020 Adv. Funct. Mater. 30 2000830
[69] He P, Ma L, Shi Z, Guo G Y, Zheng J G, Xin Y, and Zhou S M 2012 Phys. Rev. Lett. 109 066402
[70] Belopolski I, Manna K, Sanchez D S, Chang G, Ernst B, Yin J, Zhang S S, Cochran T, Shumiya N, Zheng H, Singh B, Bian G, Multer D, Litskevich M, Zhou X, Huang S M, Wang B, Chang T R, Xu S Y, Bansil A, Felser C, Lin H, and Hasan M Z 2019 Science 365 1278
[71] Thouless D J, Kohmoto M, Nightingale M P, and den Nijs M 1982 Phys. Rev. Lett. 49 405
Related articles from Frontiers Journals
[1] Meng Zhu, Jianting Dong, Xinlu Li, Fanxing Zheng, Ye Zhou, Kun Wu, and Jia Zhang. Magnetic Switching Dynamics and Tunnel Magnetoresistance Effect Based on Spin-Splitting Noncollinear Antiferromagnet Mn$_{3}$Pt[J]. Chin. Phys. Lett., 2024, 41(4): 047503
[2] Jing Guo, Shu Cai, Dong Wang, Haiyun Shu, Liuxiang Yang, Pengyu Wang, Wentao Wang, Huanfang Tian, Huaixin Yang, Yazhou Zhou, Jinyu Zhao, Jinyu Han, Jianqi Li, Qi Wu, Yang Ding, Wenge Yang, Tao Xiang, Ho-kwang Mao, and Liling Sun. Robust Magnetism Against Pressure in Non-Superconducting Samples Prepared from Lutetium Foil and H$_{2}$/N$_{2}$ Gas Mixture[J]. Chin. Phys. Lett., 2023, 40(9): 047503
[3] Yang Liu, Meng Lyu, Junyan Liu, Shen Zhang, Jinying Yang, Zhiwei Du, Binbin Wang, Hongxiang Wei, and Enke Liu. Structural Determination, Unstable Antiferromagnetism and Transport Properties of Fe-Kagome Y$_{0.5}$Fe$_{3}$Sn$_{3}$ Single Crystals[J]. Chin. Phys. Lett., 2023, 40(4): 047503
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 047503
[5] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 047503
[6] Honglei Feng, Yong Li, Youguo Shi, Hong-Yi Xie, Yongqing Li, and Yang Xu. Resistance Anomaly and Linear Magnetoresistance in Thin Flakes of Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$[J]. Chin. Phys. Lett., 2022, 39(7): 047503
[7] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 047503
[8] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 047503
[9] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 047503
[10] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 047503
[11] Sheng Xu, Liqin Zhou, Xiao-Yan Wang, Huan Wang, Jun-Fa Lin, Xiang-Yu Zeng, Peng Cheng, Hongming Weng, and Tian-Long Xia. Quantum Oscillations and Electronic Structure in the Large-Chern-Number Topological Chiral Semimetal PtGa[J]. Chin. Phys. Lett., 2020, 37(10): 047503
[12] Guangqiang Wang, Guoqing Chang, Huibin Zhou, Wenlong Ma, Hsin Lin, M. Zahid Hasan, Su-Yang Xu, and Shuang Jia. Field-Induced Metal–Insulator Transition in $\beta$-EuP$_3$[J]. Chin. Phys. Lett., 2020, 37(10): 047503
[13] Kaixuan Zhang, Yongping Du, Pengdong Wang, Laiming Wei, Lin Li, Qiang Zhang, Wei Qin, Zhiyong Lin, Bin Cheng, Yifan Wang, Han Xu, Xiaodong Fan, Zhe Sun, Xiangang Wan, and Changgan Zeng. Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 047503
[14] Qingwei Fu, Yong Li, Lina Chen, Fusheng Ma, Haotian Li, Yongbing Xu, Bo Liu, Ronghua Liu, and Youwei Du. Mode Structures and Damping of Quantized Spin Waves in Ferromagnetic Nanowires[J]. Chin. Phys. Lett., 2020, 37(8): 047503
[15] Huan-Cheng Chen, Zhe-Feng Lou, Yu-Xing Zhou, Qin Chen, Bin-Jie Xu, Shui-Jin Chen, Jian-Hua Du, Jin-Hu Yang, Hang-Dong Wang, Ming-Hu Fang. Negative Magnetoresistance in Antiferromagnetic Topological Insulator EuSn$_2$As$_2$$^{*}$[J]. Chin. Phys. Lett., 2020, 37(4): 047503
Viewed
Full text


Abstract