CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Magnetic Switching Dynamics and Tunnel Magnetoresistance Effect Based on Spin-Splitting Noncollinear Antiferromagnet Mn$_{3}$Pt |
Meng Zhu†, Jianting Dong†, Xinlu Li, Fanxing Zheng, Ye Zhou, Kun Wu, and Jia Zhang* |
School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China |
|
Cite this article: |
Meng Zhu, Jianting Dong, Xinlu Li et al 2024 Chin. Phys. Lett. 41 047502 |
|
|
Abstract In comparison to ferromagnets, antiferromagnets are believed to have superior advantages for applications in next-generation magnetic storage devices, including fast spin dynamics, vanishing stray fields and robust against external magnetic field, etc. However, unlike ferromagnetic orders, which could be detected through tunneling magnetoresistance effect in magnetic tunnel junctions, the antiferromagnetic order (i.e., Néel vector) cannot be effectively detected by the similar mechanism due to the spin degeneracy of conventional antiferromagnets. Recently discovered spin-splitting noncollinear antiferromagnets, such as Mn$_{3}$Pt with momentum-dependent spin polarization due to their special magnetic space group, make it possible to achieve remarkable tunneling magnetoresistance effects in noncollinear antiferromagnetic tunnel junctions. Through first-principles calculations, we demonstrate that the tunneling magnetoresistance ratio can reach more than 800% in Mn$_{3}$Pt/perovskite oxides/Mn$_{3}$Pt antiferromagnetic tunnel junctions. We also reveal the switching dynamics of Mn$_{3}$Pt thin film under magnetic fields using atomistic spin dynamic simulation. Our study provides a reliable method for detecting Néel vector of noncollinear antiferromagnets through the tunnel magnetoresistance effect and may pave its way for potential applications in antiferromagnetic memory devices.
|
|
Received: 16 January 2024
Published: 09 April 2024
|
|
PACS: |
75.40.Gb
|
(Dynamic properties?)
|
|
75.40.Mg
|
(Numerical simulation studies)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
|
|
|
[1] | Jungwirth T, Sinova J, Manchon A, Marti X, Wunderlich J, and Felser C 2018 Nat. Phys. 14 200 |
[2] | Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 |
[3] | Wadley P, Howells B, Železny J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, and Jungwirth T 2016 Science 351 587 |
[4] | Bodnar S Y, Šmejkal L, Turek I, Jungwirth T, Gomonay O, Sinova J, Sapozhnik A A, Elmers H J, Kläui M, and Jourdan M 2018 Nat. Commun. 9 348 |
[5] | Hoogeboom G R, Aqeel A, Kuschel T, Palstra T T M, and van Wees B J 2017 Appl. Phys. Lett. 111 052409 |
[6] | Fischer J, Gomonay O, Schlitz R, Ganzhorn K, Vlietstra N, Althammer M, Huebl H, Opel M, Gross R, Goennenwein S T B, and Geprägs S 2018 Phys. Rev. B 97 014417 |
[7] | Chiang C C, Huang S Y, Qu D, Wu P H, and Chien C L 2019 Phys. Rev. Lett. 123 227203 |
[8] | Tsymbal E Y, Mryasov O N, and LeClair P R 2003 J. Phys.: Condens. Matter 15 R109 |
[9] | Higo T and Nakatsuji S 1995 J. Magn. Magn. Mater. 139 L231 |
[10] | Moodera J S, Kinder L R, Wong T M, and Meservey R 1995 Phys. Rev. Lett. 74 3273 |
[11] | Butler W H, Zhang X G, Schulthess T C, and MacLaren J M 2001 Phys. Rev. B 63 054416 |
[12] | Yuasa S, Nagahama T, Fukushima A, Suzuki Y, and Ando K 2004 Nat. Mater. 3 868 |
[13] | Ozatay O, Mather P G, Thiele J U, Hauet T, and Braganca P M 2011 Comprehensive Nanosci. Nanotechnol. 4 561 |
[14] | Wadley P, Hills V, Shahedkhah M R, Edmonds K W, Campion R P, Novák V, Ouladdiaf B, Khalyavin D, Langridge S, Saidl V, Nemec P, Rushforth A W, Gallagher B L, Dhesi S S, Maccherozzi F, Železny J, and Jungwirth T 2015 Sci. Rep. 5 17079 |
[15] | Yuan L D, Wang Z, Luo J W, and Zunger A 2021 Phys. Rev. Mater. 5 014409 |
[16] | Hayami S, Yanagi Y, and Kusunose H 2019 J. Phys. Soc. Jpn. 88 123702 |
[17] | Šmejkal L, Sinova J, and Jungwirth T 2022 Phys. Rev. X 12 011028 |
[18] | Shao D F, Zhang S H, Li M, Eom C B, and Tsymbal E Y 2021 Nat. Commun. 12 7061 |
[19] | Šmejkal L, González-Hernández R, Jungwirth T, and Sinova J 2020 Sci. Adv. 6 eaaz8809 |
[20] | Ahn K H, Hariki A, Lee K W, and Kuneš J 2019 Phys. Rev. B 99 184432 |
[21] | Berlijn T, Snijders P C, Delaire O, Zhou H D, Maier T A, Cao H B, Chi S X, Matsuda M, Wang Y, Koehler M R, Kent P R C, and Weitering H H 2017 Phys. Rev. Lett. 118 77201 |
[22] | Chen H, Niu Q, and MacDonald A H 2014 Phys. Rev. Lett. 112 017205 |
[23] | Kübler J and Felser Cr 2014 Europhys. Lett. 108 67001 |
[24] | Zhang Y, Sun Y, Yang H, Železny J, Parkin S P P, Felser C, and Yan B 2017 Phys. Rev. B 95 075128 |
[25] | Zhang Y, Železný J, Sun Y, Brink J V D, and Yan B 2018 New J. Phys. 20 073028 |
[26] | Kimata M, Chen H, Kondou K, Sugimoto S, Muduli P K, Ikhlas M, Omori Y, Tomita T, MacDonald A H, Nakatsuji S, and Otani Y 2019 Nature 565 627 |
[27] | Dong J T, Li X L, Gurung G, Zhu M, Zhang P N, Zheng F X, Tsymbal E Y, and Zhang J 2022 Phys. Rev. Lett. 128 197201 |
[28] | Brown P J, Nunez V, Tasset F, Forsyth J B, and Radhakrishna P 1990 J. Phys.: Condens. Matter 2 9409 |
[29] | Liu Z Q, Chen H, Wang J M, Liu J H, Wang K, Feng Z X, Yan H, Wang X R, Jiang C B, Coey J M D, and MacDonald A H 2018 Nat. Electron. 1 172 |
[30] | Mukherjee J, Suraj T S, Basumatary H, Sethupathi K, and Raman K V 2021 Phys. Rev. Mater. 5 014201 |
[31] | Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A, and Chantrell R W 2014 J. Phys.: Condens. Matter 26 103202 |
[32] | Jenkins S, Fan W J, Gaina R, Chantrell R W, Klemmer T, and Evans R F L 2020 Phys. Rev. B 102 140404 |
[33] | Krén E, Kádár G, Pál L, Sólyom J, Szabó P, and Tarnóczi T 1968 Phys. Rev. 171 574 |
[34] | See the Supplemental Material for details of Mn$_{3}$Pt switching dynamics, magnetic anisotropy energy as a function of film thickness, interface formation energy, layer-resolved density of states, and TMR as a function of energy in Mn$_{3}$Pt/PbTiO$_{3}$/Mn$_{3}$Pt tunnel junction, and the computational details on self-consistent, transmission of magnetic tunnel junction and lowest decay rates of the evanescent states for other perovskites, band structure of bulk Mn$_{3}$Pt. |
[35] | Li X L, Lü J T, Zhang J, You L, Su Y R, and Tsymbal E Y 2019 Nano Lett. 19 5133 |
[36] | Nelmes R J and Kuhs W F 1985 Solid State Commun. 54 721 |
[37] | Velev J P, Belashchenko K D, Stewart D A, van Schilfgaarde M, Jaswal S S, and Tsymbal E Y 2005 Phys. Rev. Lett. 95 216601 |
[38] | Qin P, Yan H, Wang X, Chen H, Meng Z, Dong J, Zhu M, Cai J, Feng Z, Zhou X, Liu L, Zhang T, Zeng Z, Zhang J, Jiang C, and Liu Z 2023 Nature 613 485 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|