Chin. Phys. Lett.  2024, Vol. 41 Issue (4): 044205    DOI: 10.1088/0256-307X/41/4/044205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Reversible Optical Isolators and Quasi-Circulators Using a Magneto-Optical Fabry–Pérot Cavity
Tiantian Zhang1, Wenpeng Zhou1, Zhixiang Li1, Yutao Tang2, Fan Xu2, Haodong Wu1, Han Zhang3, Jiang-Shan Tang1*, Ya-Ping Ruan1*, and Keyu Xia1,4*
1College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2Shenzhen Shaanxi Coal Hi-tech Research Institute Co., Ltd, Shenzhen 518083, China
3School of Physics, Nanjing University, Nanjing 210023, China
4Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
Cite this article:   
Tiantian Zhang, Wenpeng Zhou, Zhixiang Li et al  2024 Chin. Phys. Lett. 41 044205
Download: PDF(2631KB)   PDF(mobile)(2643KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nonreciprocal optical devices are essential for laser protection, modern optical communication and quantum information processing by enforcing one-way light propagation. The conventional Faraday magneto-optical nonreciprocal devices rely on a strong magnetic field, which is provided by a permanent magnet. As a result, the isolation direction of such devices is fixed and severely restricts their applications in quantum networks. In this work, we experimentally demonstrate the simultaneous one-way transmission and unidirectional reflection by using a magneto-optical Fabry–Pérot cavity and a magnetic field strength of 50 mT. An optical isolator and a three-port quasi-circulator are realized based on this nonreciprocal cavity system. The isolator achieves an isolation ratio of up to 22 dB and an averaged insertion loss down to 0.97 dB. The quasi-circulator is realized with a fidelity exceeding $99\%$ and an overall survival probability of $89.9\%$, corresponding to an insertion loss of $\sim$ $0.46$ dB. The magnetic field is provided by an electromagnetic coil, thereby allowing for reversing the light circulating path. The reversible quasi-circulator paves the way for building reconfigurable quantum networks.
Received: 29 January 2024      Editors' Suggestion Published: 16 April 2024
PACS:  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  78.20.Ls (Magneto-optical effects)  
  85.70.Sq (Magnetooptical devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/4/044205       OR      https://cpl.iphy.ac.cn/Y2024/V41/I4/044205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tiantian Zhang
Wenpeng Zhou
Zhixiang Li
Yutao Tang
Fan Xu
Haodong Wu
Han Zhang
Jiang-Shan Tang
Ya-Ping Ruan
and Keyu Xia
[1] Sathyamoorthy S R, Tornberg L, Kockum A F, Baragiola B Q, Combes J, Wilson C M, Stace T M, and Johansson G 2014 Phys. Rev. Lett. 112 093601
[2] Daiss S, Langenfeld S, Welte S, Distante E, Thomas P, Hartung L, Morin O, and Rempe G 2021 Science 371 614
[3] Tang L, Tang J, Chen M, Nori F, Xiao M, and Xia K 2022 Phys. Rev. Lett. 128 083604
[4] Caloz C, Alù A, Tretyakov S, Sounas D, Achouri K, and Deck-Léger Z L 2018 Phys. Rev. Appl. 10 047001
[5] Scheucher M, Hilico A, Will E, Volz J, and Rauschenbeutel A 2016 Science 354 1577
[6] Sliwa K M, Hatridge M, Narla A, Shankar S, Frunzio L, Schoelkopf R J, and Devoret M H 2015 Phys. Rev. X 5 041020
[7]Linkhart D K 2014 Microwave Circulator Design (Artech House)
[8] Jalas D, Petrov A, Eich M, Freude W, Fan S H, Yu Z F, Baets R, Popović M, Melloni A, Joannopoulos J D et al. 2013 Nat. Photonics 7 579
[9] Potton R J 2004 Rep. Prog. Phys. 67 717
[10] Kamal A, Clarke J, and Devoret M H 2011 Nat. Phys. 7 311
[11] Gauthier D J, Narum P, and Boyd R W 1986 Opt. Lett. 11 623
[12] Ballato J and Snitzer E 1995 Appl. Opt. 34 6848
[13] Snetkov I L, Voitovich A V, Palashov O V, and Khazanov E A 2014 IEEE J. Quantum Electron. 50 434
[14] Starobor A, Mironov E, and Palashov O 2019 Opt. Lett. 44 1297
[15] Kang M S, Butsch A, and Russell P S J 2011 Nat. Photonics 5 549
[16] Huang D, Pintus P, Zhang C, Morton P, Shoji Y, Mizumoto T, and Bowers J E 2017 Optica 4 23
[17] Cirac J I, Zoller P, Kimble H J, and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[18] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
[19] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, and Zoller P 2017 Nature 541 473
[20] Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J, and Gong S 2018 Nat. Photonics 12 744
[21] Shen Z, Zhang Y L, Chen Y, Sun F W, Zou X B, Guo G C, Zou C L, and Dong C H 2018 Nat. Commun. 9 1797
[22] Ren Y L, Ma S L, Xie J K, Li X K, Cao M T, and Li F L 2022 Phys. Rev. A 105 013711
[23] Kimble H J 2008 Nature 453 1023
[24] Alshowkan M, Williams B P, Evans P G, Rao N S V, Simmerman E M, Lu H H, Lingaraju N B, Weiner A M, Marvinney C E, Pai Y Y et al. 2021 PRX Quantum 2 040304
[25] Ren Y L, Ma S L, Xie J K, and Li F L 2023 Appl. Phys. Lett. 122 244002
[26] Zhang F, Ren J, Shan L, Duan X, Li Y, Zhang T, Gong Q, and Gu Y 2019 Phys. Rev. A 100 053841
[27] Xia K, Lu G, Lin G, Cheng Y, Niu Y, Gong S, and Twamley J 2014 Phys. Rev. A 90 043802
[28] Sayrin C, Junge C, Mitsch R, Albrecht B, O'Shea D, Schneeweiss P, Volz J, and Rauschenbeutel A 2015 Phys. Rev. X 5 041036
[29] Tang L, Tang J S, Zhang W D, Lu G W, Zhang H, Zhang Y, Xia K Y, and Xiao M 2019 Phys. Rev. A 99 043833
[30] Tang J S, Nie W, Tang L, Chen M, Su X, Lu Y, Nori F, and Xia K 2022 Phys. Rev. Lett. 128 203602
[31] Yang P, Li M, Han X, He H, Li G, Zou C L, Zhang P, Qian Y, and Zhang T 2023 Laser & Photonics Rev. 17 2200574
[32] Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, and Zhu S Y 2013 Phys. Rev. Lett. 110 093901
[33] Horsley S A R, Wu J H, Artoni M, and La Rocca G C 2013 Phys. Rev. Lett. 110 223602
[34] Sounas D L and Alù A 2017 Nat. Photonics 11 774
[35] Cotrufo M, Cordaro A, Sounas D L, Polman A, and Alù A 2024 Nat. Photonics 18 81
[36] Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P et al. 2019 Phys. Rev. Lett. 123 233604
[37] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, and Xiao M 2014 Nat. Photonics 8 524
[38] Guo X, Zou C L, Jung H, and Tang H X 2016 Phys. Rev. Lett. 117 123902
[39] Cao Q T, Wang H, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q, and Xiao Y F 2017 Phys. Rev. Lett. 118 033901
[40] Sounas D L, Soric J, and Alù A 2018 Nat. Electron. 1 113
[41] Tang L, Tang J S, Wu H D, Zhang J, Xiao M, and Xia K Y 2021 Photonics Res. 9 1218
[42] Pan R K, Tang L, Xia K, and Nori F 2022 Chin. Phys. Lett. 39 124201
[43] Xia K, Nori F, and Xiao M 2018 Phys. Rev. Lett. 121 203602
[44] Li E Z, Ding D S, Yu Y C, Dong M X, Zeng L, Zhang W H, Ye Y H, Wu H Z, Zhu Z H, Gao W, Guo G C, and Shi B S 2020 Phys. Rev. Res. 2 033517
[45] Liang C, Liu B, Xu A N, Wen X, Lu C, Xia K, Tey M K, Liu Y C, and You L 2020 Phys. Rev. Lett. 125 123901
[46] Dong M X, Xia K Y, Zhang W H, Yu Y C, Ye Y H, Li E Z, Zeng L, Ding D S, Shi B S, Guo G C, and Nori F 2021 Sci. Adv. 7 eabe8924
[47] Tang L, Tang J S, and Xia K Y 2022 Adv. Quantum Technol. 5 2200014
[48] Hafezi M and Rabl P 2012 Opt. Express 20 7672
[49] Kim J, Kuzyk M C, Han K, Wang H, and Bahl G 2015 Nat. Phys. 11 275
[50] Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, and Dong C H 2016 Nat. Photonics 10 657
[51] Fang K, Luo J, Metelmann A, Matheny M H, Marquardt F, Clerk A A, and Painter O 2017 Nat. Phys. 13 465
[52] Kittlaus E A, Jones W M, Rakich P T, Otterstrom N T, Muller R E, and Rais-Zadeh M 2021 Nat. Photonics 15 43
[53] Huang R, Miranowicz A, Liao J Q, Nori F, and Jing H 2018 Phys. Rev. Lett. 121 153601
[54] Chai C Z, Zhao H Q, Tang H X, Guo G C, Zou C L, and Dong C H 2020 Laser & Photonics Rev. 14 1900252
[55] Fan B, Nasir M E, Nicholls L H, Zayats A V, and Podolskiy V A 2019 Adv. Opt. Mater. 7 1801420
[56] Carothers K J, Norwood R A, and Pyun J 2022 Chem. Mater. 34 2531
[57] Toyoda S, Abe N, and Arima T 2019 Phys. Rev. Lett. 123 077401
[58] Ren Y L, Ma S L, Xie J K, Li X K, and Li F L 2021 Opt. Express 29 41399
[59] Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C, and Ross C A 2011 Nat. Photonics 5 758
[60] Duggan R, del Pino J, Verhagen E, and Alù A 2019 Phys. Rev. Lett. 123 023602
[61] Yan W, Yang Y, Liu S, Zhang Y, Xia S, Kang T, Yang W, Qin J, Deng L, and Bi L 2020 Optica 7 1555
[62] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[63] Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, and Hu C M 2019 Phys. Rev. Lett. 123 127202
[64] Wu J H, Artoni M, and La Rocca G C 2014 Phys. Rev. Lett. 113 123004
[65] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, and Scherer A 2013 Nat. Mater. 12 108
[66] Inoue T, Noguchi N, Yoshida M, Kim H, Asano T, and Noda S 2023 Phys. Rev. Appl. 20 L011001
[67]Walls D F and Milburn G J 2007 Quantum Optics (Berlin: Springer)
[68] Ling H Y 1994 J. Opt. Soc. Am. A 11 754
[69] Dong L, Jiang H, Chen H, and Shi Y 2010 J. Appl. Phys. 107 093101
[70] Rosenberg R, Rubinstein C B, and Herriott D R 1964 Appl. Opt. 3 1079
[71] Li Y Q, Steuerman D W, Berezovsky J, Seferos D S, Bazan G C, and Awschalom D D 2006 Appl. Phys. Lett. 88 193126
[72] Hu X X, Wang Z B, Zhang P et al. 2021 Nat. Commun. 12 2389
[73] Lipson S G, Lipson H, and Tannhauser D S 2010 Optical Physics (Cambridge: Cambridge University Press)
[74] Collett M J and Gardiner C W 1984 Phys. Rev. A 30 1386
[75] Gardiner C W and Collett M J 1985 Phys. Rev. A 31 3761
[76] Combes J, Kerckhoff J, and Sarovar M 2017 Adv. Phys.: X 2 784
[77] Ao Y, Hu X, You Y, Lu C, Fu Y, Wang X, and Gong Q 2020 Phys. Rev. Lett. 125 013902
[78] Mikhaylovskiy R V, Hendry E, and Kruglyak V V 2012 Phys. Rev. B 86 100405
[79] Zak J, Moog E R, Liu C, and Bader S D 1991 Phys. Rev. B 43 6423
[80] Shiraishi K, Tajima F, and Kawakami S 1986 Opt. Lett. 11 82
[81] Shalaby M, Peccianti M, Ozturk Y, and Morandotti R 2013 Nat. Commun. 4 1558
[82] Mironov E A, Voitovich A V, and Palashov O V 2019 Laser Phys. Lett. 17 015001
[83] Slezák O, Vojna D, Pilař J, Divoký M, Denk O, Hanuš M, Navrátil P, Smrž M, Lucianetti A, and Mocek T 2023 Opt. Lett. 48 3471
[84] Vojna D, Slezák O, Lucianetti A, and Mocek T 2019 Appl. Sci. 9 3160
[85] Ikesue A and Aung Y L 2018 J. Am. Ceram. Soc. 101 5120
Related articles from Frontiers Journals
[1] Peng Tian, Wenxuan Ge, Songsong Li, Lei Gao, Jianhua Jiang, and Yadong Xu. Near-Field Radiative Heat Transfer between Disordered Multilayer Systems[J]. Chin. Phys. Lett., 2023, 40(6): 044205
[2] ZHANG Wen-Fu, LIAN Jie, WANG Ying-Shun, HU Xue-Yuan, SUN Zhao-Zong, ZHAO Ming-Lin, WANG Ying, LI Meng-Meng. Propagation of Partially Coherent Elegant Hermite-Cosh-Gaussian Beam in Non-Kolmogorov Turbulence[J]. Chin. Phys. Lett., 2015, 32(06): 044205
[3] ZHANG Yun-Tian, ZHANG Zhi-Gang, CHENG Teng, ZHANG Qing-Chuan, WU Xiao-Ping. Accelerating Generalized Polygon Beams and Their Propagation[J]. Chin. Phys. Lett., 2015, 32(01): 044205
[4] HE Tao, YANG Su-Hui, Miguel Ángel Muñoz, ZHANG Hai-Yang, ZHAO Chang-Ming, ZHANG Yi-Chen, XU Peng. High-Power High-Efficiency Laser Power Transmission at 100 m Using Optimized Multi-Cell GaAs Converter[J]. Chin. Phys. Lett., 2014, 31(10): 044205
[5] REN Zhi-Jun, LI Xiao-Dong, FAN Chang-Jiang, XU Zhuo-Qi. Generation of Optical Accelerating Quinary-Cusp Beams and Their Optical Characteristics[J]. Chin. Phys. Lett., 2013, 30(11): 044205
[6] YANG Chao, JIN Wei, GUO Li-Xin. Electromagnetic Wave Propagation over Oil-Covered Sea Surface[J]. Chin. Phys. Lett., 2012, 29(7): 044205
[7] TAO Ru-Mao, SI Lei, MA Yan-Xing, ZOU Yong-Chao, ZHOU Pu* . Tolerance on Tilt Error for the Incoherent Combination of Fiber Lasers in a Real Environment[J]. Chin. Phys. Lett., 2011, 28(7): 044205
[8] Cumali Sabah . Refraction Characteristics of Cold Plasma Thin Film as a Left-Handed Metamaterial[J]. Chin. Phys. Lett., 2011, 28(6): 044205
[9] ZHOU Pu**, WANG Xiao-Lin, MA Yan-Xing, MA Hao-Tong, XU Xiao-Jun, LIU Ze-Jin . Propagation of Coherent Gaussian Schell-Model Beam Array in a Misaligned Optical System[J]. Chin. Phys. Lett., 2011, 28(5): 044205
[10] LIN Yan-He, ZHU Qi-Biao, ZHANG Yan,. Opposite Goos-Hänchen Displacements for TE- and TM-Polarized Beams Transmitting through a Slab of Indefinite Metamaterial[J]. Chin. Phys. Lett., 2010, 27(7): 044205
[11] Lü Su-Ye, JI Xiao-Ling, Lü Bai-Da. Partially Coherent cosh-Gaussian Beams in Atmospheric Turbulence with the Same Directionality as a Laser[J]. Chin. Phys. Lett., 2007, 24(10): 044205
[12] Cumali Sabah, Savas Uckun. Frequency Response of Multilayer Media Comprised of Double-Negative and Double-Positive Slabs[J]. Chin. Phys. Lett., 2007, 24(5): 044205
[13] CHEN Xiao, JIANG Hong-Bing, GONG Qi-Huang. Lengthening the Lifetime of Long Plasma Channel in Air Generated by Femtosecond Laser Pulse[J]. Chin. Phys. Lett., 2006, 23(6): 044205
[14] JIN Zhan, ZHANG Jie, LIU Yun-Quan, LI Kun, YUAN Xiao-Hui, HAO Zuo-Qiang, ZHENG Jun, LU Xin, LI Yu-Tong, WANG Zhao-Hua, LING Wei-Jun, WEI Zhi-Yi. Coherence Measurement of White Light Emission from Femtosecond Laser Propagation in Air[J]. Chin. Phys. Lett., 2005, 22(10): 044205
[15] LIU Xi-Zhe, MENG Qing-Bo, GAO Chun-Xiao, XUE Bo-Fei, WANG Hong-Xia, CHEN Li-Quan, O. Sato, A. Fujishima. Optical Design of Dye-Sensitized Nanocrystalline Solar Cells[J]. Chin. Phys. Lett., 2004, 21(7): 044205
Viewed
Full text


Abstract