Chin. Phys. Lett.  2024, Vol. 41 Issue (4): 044204    DOI: 10.1088/0256-307X/41/4/044204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Three-Soliton Interactions and the Implementation of Their All-Optical Switching Function
Houhui Yi1, Xin Zhang1*, Lingxian Shi2, Yanli Yao2, Shubin Wang3, and Guoli Ma4*
1School of Intelligent Manufacturing, Weifang University of Science and Technology, Weifang 262700, China
2Institute of Aeronautical Engineering, Shandong University of Aeronautics, Binzhou 256603, China
3Flight College, Shandong University of Aeronautics, Binzhou 256603, China
4Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
Cite this article:   
Houhui Yi, Xin Zhang, Lingxian Shi et al  2024 Chin. Phys. Lett. 41 044204
Download: PDF(5751KB)   PDF(mobile)(5785KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As a key component in all-optical networks, all-optical switches play a role in constructing all-optical switching. Due to the absence of photoelectric conversion, all-optical networks can overcome the constraints of electronic bottlenecks, thereby improving communication speed and expanding their communication bandwidth. We study all-optical switches based on the interactions among three optical solitons. By analytically solving the coupled nonlinear Schrödinger equation, we obtain the three-soliton solution to the equation. We discuss the nonlinear dynamic characteristics of various optical solitons under different initial conditions. Meanwhile, we analyze the influence of relevant physical parameters on the realization of all-optical switching function during the process of three-soliton interactions. The relevant conclusions will be beneficial for expanding network bandwidth and reducing power consumption to meet the growing demand for bandwidth and traffic.
Received: 27 February 2024      Published: 25 April 2024
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/4/044204       OR      https://cpl.iphy.ac.cn/Y2024/V41/I4/044204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Houhui Yi
Xin Zhang
Lingxian Shi
Yanli Yao
Shubin Wang
and Guoli Ma
[1] Zhang X, Yi H H, Yao Y L, Wang S B, and Shi L X 2023 Chin. Phys. Lett. 40 124204
[2] Xomalis A, Demirtzioglou I, Jung Y M, Plum E, Lacava C, Petropoulos P, Richardson D J, and Zheludev N I 2018 Appl. Phys. Lett. 113 051103
[3] Liu W J, Yang C Y, Liu M L, Yu W T, Zhang Y J, Lei M, and Wei Z Y 2017 Europhys. Lett. 118 34004
[4] Liu W J and Lei M 2013 J. Electromagn. Waves Appl. 27 2288
[5] Tofighi S and Bahrampour A R 2013 Appl. Opt. 52 6131
[6] Chiaraluce F, Gambi E, and Pierleoni P 1999 J. Lightwave Technol. 17 1670
[7]Hasegawa A and Toda H 1998 IEICE Trans. Commun. 81 1681
[8] Qi H X, Wang X X, Hu X Y, Du Z C, Yang J Y, Yu Z X, Ding S Q, Chu S S, and Gong Q H 2021 J. Appl. Phys. 129 210906
[9] Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, and Notomi M 2019 Nat. Photonics 14 37
[10] Born B, Krupa J D A, Geoffroy-Gagnon S, and Holzman J F 2015 Nat. Commun. 6 8097
[11] Ji Y F, Zhang J, Zhao Y L, Li H, Yang Q, Ge C, Xiong Q J, Xue D J, Yu J J, and Qiu S F 2014 IEEE J. Sel. Areas Commun. 32 1600
[12] Xie Q T, Luo X B, and Wu B 2010 Opt. Lett. 35 321
[13] Li J Q, Li L, Zhao J Q, and Li C F 2004 Chin. Phys. Lett. 21 2205
[14]Tajima K, Nakamura S, Furukawa A, and Sasaki T 2004 IEICE Trans. Electron. E87C 1119
[15] Potasek M J and Yang Y J 2002 IEEE J. Sel. Top. Quantum Electron. 8 714
[16] Xu J, He P P, Feng D L, Luo Y M, Fan S Q, Yong K L, and Tsakmakidis K L 2023 Opt. Express 31 42388
[17] Zhu J and Xiong J Y 2023 Opt. Express 31 36677
[18] Yao Y L, Yi H H, Zhang X, and Ma G L 2023 Chin. Phys. Lett. 40 100503
[19] Liu M W, Wang H T, Yang H J, and Liu W J 2023 Nonlinear Dyn. 112 1327
[20] Kruglov V I and Triki H 2023 Chin. Phys. Lett. 40 090503
[21] Wang H, Zhou Q, Yang H, Meng X, Tian Y, and Liu W 2023 Proc. R. Soc. A 479 20230601
[22] Zhang X Y and Wu Y 2023 Chin. Phys. Lett. 40 080502
[23] Sun Y Z, Hu Z H, Triki H, Mirzazadeh M, Liu W J, Biswas A, and Zhou Q 2023 Nonlinear Dyn. 111 18391
[24] Wang S B, Ma G L, Zhang X, and Zhu D Y 2022 Chin. Phys. Lett. 39 114202
[25] Yan Y Y, Liu W J, Wang H T, Liu X Y, Meng X K, Yang H J, and Tian Y 2023 Nonlinear Dyn. 111 17463
[26] Liu C, Chen S C, Yao X K, and Akhmediev N 2022 Chin. Phys. Lett. 39 094201
[27] Yang J Q and Liu W J 2023 Acta Phys. Sin. 72 100504 (in Chinese)
[28] Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J, and Biswas A 2022 Chin. Phys. Lett. 39 044202
[29] Yuan C L, Yang H J, Meng X K, Tian Y, Zhou Q, and Liu W J 2023 Chaos Solitons & Fractals 168 113180
[30] Zhou Q, Huang Z H, Sun Y Z, Triki H, Liu W J, and Biswas A 2022 Nonlinear Dyn. 111 5757
[31] Liu X Y, Zhang H X, Yan Y Y, and Liu W J 2023 Phys. Lett. A 457 128568
[32] Yu W T, Liu W J, and Zhang H X 2022 Chaos Solitons & Fractals 159 112132
Related articles from Frontiers Journals
[1] Yuxin Guo, Xiaoxi Xu, Zhaopin Chen, Yangui Zhou, Bin Liu, Hexiang He, Yongyao Li, and Jianing Xie. Three-Wave Mixing of Dipole Solitons in One-Dimensional Quasi-Phase-Matched Nonlinear Crystals[J]. Chin. Phys. Lett., 2024, 41(1): 044204
[2] Xin Zhang, Houhui Yi, Yanli Yao, Shubin Wang, and Lingxian Shi. All-Optical Switches for Optical Soliton Interactions in a Birefringent Fiber[J]. Chin. Phys. Lett., 2023, 40(12): 044204
[3] Abdul-Majid Wazwaz. New Painlevé Integrable (3+1)-Dimensional Combined pKP–BKP Equation: Lump and Multiple Soliton Solutions[J]. Chin. Phys. Lett., 2023, 40(12): 044204
[4] Yanli Yao, Houhui Yi, Xin Zhang, and Guoli Ma. Effective Control of Three Soliton Interactions for the High-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2023, 40(10): 044204
[5] Vladimir I. Kruglov and Houria Triki. Interacting Solitons, Periodic Waves and Breather for Modified Korteweg–de Vries Equation[J]. Chin. Phys. Lett., 2023, 40(9): 044204
[6] Xinyi Zhang and Ye Wu. Soliton Interactions with Different Dispersion Curve Functions in Heterogeneous Systems[J]. Chin. Phys. Lett., 2023, 40(8): 044204
[7] Xi-Meng Liu, Zhi-Yang Zhang, and Wen-Jun Liu. Physics-Informed Neural Network Method for Predicting Soliton Dynamics Supported by Complex Parity-Time Symmetric Potentials[J]. Chin. Phys. Lett., 2023, 40(7): 044204
[8] Wen-Hao Xiong, Chuan-Fei Yao, Ping-Xue Li, Fei-Yu Zhu, and Ruo-Nan Lei. Photonic Generation of Chirp-Rate-Tunable Microwave Waveforms Using Temporal Cavity Solitons with Agile Repetition Rate[J]. Chin. Phys. Lett., 2023, 40(6): 044204
[9] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 044204
[10] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 044204
[11] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 044204
[12] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 044204
[13] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 044204
[14] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 044204
[15] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 044204
Viewed
Full text


Abstract