Chin. Phys. Lett.  2024, Vol. 41 Issue (4): 044203    DOI: 10.1088/0256-307X/41/4/044203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Unveiling of Terahertz Emission from Ultrafast Demagnetization and the Anomalous Hall Effect in a Single Ferromagnetic Film
Zhiqiang Lan, Zhangshun Li, Haoran Xu, Fan Liu, Zuanming Jin*, Yan Peng, and Yiming Zhu
Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
Cite this article:   
Zhiqiang Lan, Zhangshun Li, Haoran Xu et al  2024 Chin. Phys. Lett. 41 044203
Download: PDF(670KB)   PDF(mobile)(688KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using THz emission spectroscopy, we investigate the elementary spin dynamics in ferromagnetic single-layer Fe on a sub-picosecond timescale. We demonstrate that THz radiation changes its polarity with reversal of the magnetization applied by the external magnetic field. In addition, it is found that the sign of THz polarity excited from different sides is defined by the thickness of the Fe layer and Fe/dielectric interface. Based on the thickness and symmetry dependences of THz emission, we experimentally distinguish between the two major contributions: ultrafast demagnetization and the anomalous Hall effect. Our experimental results not only enrich understanding of THz electromagnetic generation induced by femtosecond laser pulses but also provide a practical way to access laser-induced ultrafast spin dynamics in magnetic structures.
Received: 29 January 2024      Published: 09 April 2024
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  75.78.Jp (Ultrafast magnetization dynamics and switching)  
  95.85.Gn (Far infrared (10-300 μm))  
  87.50.W (Optical/infrared radiation effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/4/044203       OR      https://cpl.iphy.ac.cn/Y2024/V41/I4/044203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhiqiang Lan
Zhangshun Li
Haoran Xu
Fan Liu
Zuanming Jin
Yan Peng
and Yiming Zhu
[1] Beaurepaire E, Merle J C, Daunois A, and Bigot J Y 1996 Phys. Rev. Lett. 76 4250
[2] Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, and Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465
[3] Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, and Rasing T 2005 Nature 435 655
[4] Kirilyuk A, Kimel A V, and Rasing T 2010 Rev. Mod. Phys. 82 2731 [Erratum: 2016 Rev. Mod. Phys. 88 039904]
[5] Afanasiev D, Hortensius J R, Ivanov B A, Sasani A, Bousquet E, Blanter Y M, Mikhaylovskiy R V, Kimel A V, and Caviglia A D 2021 Nat. Mater. 20 607
[6] Wu N, Zhang S J, Wang Y X, and Meng S 2023 Prog. Surf. Sci. 98 100709
[7] Elliott P, Müller T, Dewhurst J K, Sharma S, and Gross E K U 2017 Sci. Rep. 6 38911
[8] Chumak A V, Vasyuchka V I, Serga A A, and Hillebrands B 2015 Nat. Phys. 11 453
[9] Fan X F, Hehn M, Wei G D, Malinowski G, Huang T X, Xu Y, Zhang B Y, Zhang W, Lin X Y, Zhao W S, and Mangin S 2022 Adv. Electron. Mater. 8 2200114
[10] Seifert T S, Cheng L, Wei Z X, Kampfrath T, and Qi J B 2022 Appl. Phys. Lett. 120 180401
[11] Windsor Y W, Lee S E, Zahn D, Borisov V, Thonig D, Kliemt K, Ernst A, Schussler-Langeheine C, Pontius N, Staub U, Krellner C, Vyalikh D V, Eriksson O, and Rettig L 2022 Nat. Mater. 21 514
[12] Ji B Y, Jin Z M, Wu G J, Li J G, Wan C H, Han X F, Zhang Z Z, Ma G H, Peng Y, and Zhu Y M 2023 Appl. Phys. Lett. 122 111104
[13] He J J, Li S, Frauenheim T, and Zhou Z B 2023 Nano Lett. 23 8348
[14] Kang K, Omura H, Yesudas D, Lee O, Lee K J, Lee H W, Taniyama T, and Choi G M 2023 Nat. Commun. 14 3619
[15] Ferguson B and Zhang X C 2002 Nat. Mater. 1 26
[16] Koch M, Mittleman D M, Ornik J, and Castro-Camus E 2023 Nat. Rev. Methods Primers 3 48
[17] Peng Q F, Peng Z Y, Lang Y, Zhu Y L, Zhang D W, Lü Z H, and Zhao Z X 2022 Chin. Phys. Lett. 39 053301
[18] Wu X J 2023 Chin. Phys. Lett. 40 054001
[19] Peng Y, Shi C J, Zhu Y M, Gu M, and Zhuang S L 2020 PhotoniX 1 12
[20] Peng Y, Huang J L, Luo J, Yang Z F, Wang L P, Wu X, Zang X F, Yu C, Gu M, Hu Q, Zhang X C, Zhu Y M, and Zhuang S L 2021 PhotoniX 2 12
[21] Jia G R, Zhao D X, Zhang S S, Yue X W, Qin C C, Jiao Z Y, and Bian X B 2023 Chin. Phys. Lett. 40 103202
[22] Xu X, Huang Y D, Zhang Z L, Liu J L, Lou J, Gao M X, Wu S Y, Fang G Y, Zhao Z X, Chen Y P, Sheng Z M, and Chang C 2023 Chin. Phys. Lett. 40 045201
[23] Liu Y P, Shi J C, and Chen C Y 2022 Chin. Phys. Lett. 39 018701
[24] Zhu Y, Zang X F, Chi H X, Zhou Y W, Zhu Y M, and Zhuang S L 2023 Light: Adv. Manufact. 4 104
[25] Baierl S, Mentink J H, Hohenleutner M, Braun L, Do T M, Lange C, Sell A, Fiebig M, Woltersdorf G, Kampfrath T, and Huber R 2016 Phys. Rev. Lett. 117 197201
[26] Lu J, Li X, Hwang H Y, Ofori-Okai B K, Kurihara T, Suemoto T, and Nelson K A 2017 Phys. Rev. Lett. 118 207204
[27] Qiu H S, Seifert T S, Huang L, Zhou Y J, Kaspar Z, Zhang C H, Wu J B, Fan K B, Zhang Q, Wu D, Kampfrath T, Song C, Jin B B, Chen J, and Wu P H 2023 Adv. Sci. 10 2300512
[28] Li Z S, Jiang Y X, Jin Z M, Li Z Y, Lu X Y, Ye Z J, Pang J Y, Xu Y B, and Peng Y 2022 Nanomaterials 12 4267
[29] Cheng L, Wang X B, Yang W F, Chai J W, Yang M, Chen M J, Wu Y, Chen X X, Chi D Z, Goh K E J, Zhu J X, Sun H D, Wang S J, Song J C W, Battiato M, Yang H, and Chia E E M 2019 Nat. Phys. 15 347
[30] Comstock A, Biliroglu M, Seyitliyev D, McConnell A, Vetter E, Reddy P, Kirste R, Szymanski D, Sitar Z, Collazo R, Gundogdu K, and Sun D L 2023 Adv. Opt. Mater. 11 2201535
[31] Huang L, Lee S H, Kim S D, Shim J H, Shin H J, Kim S, Park J, Park S Y, Choi Y S, Kim H J, Hong J I, Kim D E, and Kim D H 2020 Sci. Rep. 10 15843
[32] Seifert T S, Go D, Hayashi H, Rouzegar R, Freimuth F, Ando K, Mokrousov Y, and Kampfrath T 2023 Nat. Nanotechnol. 18 1132
[33] Pettine J, Padmanabhan P, Sirica N, Prasankumar R P, Taylor A J, and Chen H T 2023 Light: Sci. & Appl. 12 133
[34] Zhang W T, Maldonado P, Jin Z M, Seifert T S, Arabski J, Schmerber G, Beaurepaire E, Bonn M, Kampfrath T, Oppeneer P M, and Turchinovich D 2020 Nat. Commun. 11 4247
[35] Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, and Münzenberg M 2013 Nat. Nanotechnol. 8 256
[36] Jin Z M, Guo Y Y, Peng Y, Zhang Z Y, Pang J Y, Zhang Z Z, Liu F, Ye B, Jiang Y X, Ma G H, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, and Zhuang S L 2023 Adv. Phys. Res. 2 2370003
[37] Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, and Qi J 2018 Phys. Rev. Lett. 121 086801
[38] Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H D, and Hoffmann A 2018 Phys. Rev. Lett. 120 207207
[39] Zhang Q, Luo Z Y, Li H, Yang Y M, Zhang X H, and Wu Y H 2019 Phys. Rev. Appl. 12 054027
[40] Liu Y S, Cheng H Y, Xu Y, Vallobra P, Eimer S, Zhang X Q, Wu X J, Nie T X, and Zhao W S 2021 Phys. Rev. B 104 064419
[41] Mottamchetty V, Rani P, Brucas R, Rydberg A, Svedlindh P, and Gupta R 2023 Sci. Rep. 13 5988
[42] Su G, Li Y F, Hou D Z, Jin X F, Liu H F, and Wang S G 2014 Phys. Rev. B 90 214410
[43] Yang Y M, Luo Z Y, Wu H J, Xu Y J, Li R W, Pennycook S J, Zhang S F, and Wu Y H 2018 Nat. Commun. 9 2255
[44] Huang L, Kim J W, Lee S H, Kim S D, Tien V, Shinde K P, Shim J H, Shin Y, Shin H J, Kim S, Park J, Park S Y, Choi Y S, Kim H J, Hong J I, Kim D E, and Kim D H 2019 Appl. Phys. Lett. 115 142404
[45] Jiang Y X, Li Z S, Li Z Y, Jin Z M, Lu X Y, Xu Y B, Peng Y, and Zhu Y M 2023 Opt. Lett. 48 2054
[46] Jin Z M, Peng Y, Ni Y Y, Wu G J, Ji B Y, Wu X, Zhang Z Z, Ma G H, Zhang C, Chen L, Balakin A V, Shkurinov A P, Zhu Y M, and Zhuang S L 2022 Laser & Photonics Rev. 16 2100688
[47] Rouzegar R, Brandt L, Nádvorník L, Reiss D A, Chekhov A L, Gueckstock O, In C, Wolf M, Seifert T S, Brouwer P W, Woltersdorf G, and Kampfrath T 2022 Phys. Rev. B 106 144427
[48] Jiménez-Cavero P, Gueckstock O, Nádvorník L, Lucas I, Seifert T S, Wolf M, Rouzegar R, Brouwer P W, Becker S, Jakob G, Kläui M, Guo C Y, Wan C H, Han X F, Jin Z M, Zhao H, Wu D, Morellón L, and Kampfrath T 2022 Phys. Rev. B 105 184408
[49] Wang C, Chen Y P, Xia T H, Wang L Z, Qi R Z, Zhang J Y, and Sheng Z M 2023 Appl. Phys. Lett. 123 152403
[50] Feng Z, Tan W, Jin Z M, Chen Y J, Zhong Z F, Zhang L, Sun S, Tang J, Jiang Y X, Wu P H, Cheng J, Miao B F, Ding H F, Wang D C, Zhu Y M, Guo L, Shin S, Ma G H, Hou D Z, and Huang S Y 2023 Nano Lett. 23 8171
Related articles from Frontiers Journals
[1] Li Wang, Fan Xiao, Pan Song, Wenkai Tao, Xu Sun, Jiacan Wang, Zhigang Zheng, Jing Zhao, Xiaowei Wang, and Zengxiu Zhao. Intensity-Dependent Dipole Phase in High-Order Harmonic Interferometry[J]. Chin. Phys. Lett., 2023, 40(11): 044203
[2] Li Wang, Xiaowei Wang, Fan Xiao, Jiacan Wang, Wenkai Tao, Dongwen Zhang, and Zengxiu Zhao. Chirp Compensation for Generating Ultrashort Attosecond Pulses with 800-nm Few-Cycle Pulses[J]. Chin. Phys. Lett., 2023, 40(11): 044203
[3] Shengjie Zhang, Yufei Pei, Shiqi Hu, Na Wu, Da-Qiang Chen, Chao Lian, and Sheng Meng. Light-Induced Phonon-Mediated Magnetization in Monolayer MoS$_{2}$[J]. Chin. Phys. Lett., 2023, 40(7): 044203
[4] Wenkai Tao, Li Wang, Pan Song, Fan Xiao, Jiacan Wang, Zhigang Zheng, Jing Zhao, Xiaowei Wang, and Zengxiu Zhao. Enhanced Extreme Ultraviolet Free Induction Decay Emission Assisted by Attosecond Pulses[J]. Chin. Phys. Lett., 2023, 40(6): 044203
[5] Xing Xu, Yindong Huang, Zhelin Zhang, Jinlei Liu, Jing Lou, Mingxin Gao, Shiyou Wu, Guangyou Fang, Zengxiu Zhao, Yanping Chen, Zhengming Sheng, and Chao Chang. Laser-Chirp Controlled Terahertz Wave Generation from Air Plasma[J]. Chin. Phys. Lett., 2023, 40(4): 044203
[6] Yue Lang, Zhaoyang Peng, and Zengxiu Zhao. Multiband Dynamics of Extended Harmonic Generation in Solids under Ultraviolet Injection[J]. Chin. Phys. Lett., 2022, 39(11): 044203
[7] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 044203
[8] Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces[J]. Chin. Phys. Lett., 2021, 38(7): 044203
[9] Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang, Xu Zhang, Jia-Jun Song, and Zhi-Yi Wei. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser[J]. Chin. Phys. Lett., 2021, 38(7): 044203
[10] Hongdan Zhang, Xiwang Liu, Facheng Jin, Ming Zhu, Shidong Yang, Wenhui Dong, Xiaohong Song, and Weifeng Yang. Coherent Control of High Harmonic Generation Driven by Metal Nanotip Photoemission[J]. Chin. Phys. Lett., 2021, 38(6): 044203
[11] Nana Dong, Yan Zhou, Shanbiao Pang, Xiaodong Huang, Ke Liu, Lunhua Deng, and Huailiang Xu. Strong-Field-Induced N$_{2}^{+}$ Air Lasing in Nitrogen Glow Discharge Plasma[J]. Chin. Phys. Lett., 2021, 38(4): 044203
[12] Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm[J]. Chin. Phys. Lett., 2020, 37(12): 044203
[13] Fei Li, Yu-Jun Yang, Jing Chen, Xiao-Jun Liu, Zhi-Yi Wei, and Bing-Bing Wang. Universality of the Dynamic Characteristic Relationship of Electron Correlation in the Two-Photon Double Ionization Process of a Helium-Like System[J]. Chin. Phys. Lett., 2020, 37(11): 044203
[14] Fan Xiao , Xiaohui Fan , Li Wang , Dongwen Zhang , Jianhua Wu , Xiaowei Wang, and Zengxiu Zhao. Generation of Intense Sub-10 fs Pulses at 385 nm[J]. Chin. Phys. Lett., 2020, 37(11): 044203
[15] Cong Guo, Shuai-Shuai Sun, Lin-Lin Wei, Huan-Fang Tian, Huai-Xin Yang, Shu Gao, Yuan Tan, and Jian-Qi Li. Theoretical Simulation of the Temporal Behavior of Bragg Diffraction Derived from Lattice Deformation[J]. Chin. Phys. Lett., 2020, 37(7): 044203
Viewed
Full text


Abstract