FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Realization of an Adaptive Radiative Cooler with a Multilayer-Filter VO$_{\bf{2}}$-Based Fabry–Pérot Cavity |
Hengli Xie, Huaiyuan Yin, and Chunzhen Fan* |
School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China |
|
Cite this article: |
Hengli Xie, Huaiyuan Yin, and Chunzhen Fan 2024 Chin. Phys. Lett. 41 044202 |
|
|
Abstract A high-performance adaptive radiative cooler comprising a multilayer-filter VO$_{2}$-based Fabry–Pérot (FP) cavity is proposed. The bottom FP cavity has four layers, VO$_{2}$/NaCl/PVC/Ag. Based on the phase transition of VO$_{2}$, the average emissivity in the transparent window can be switched from 3.7% to 96.3%. Additionally, the average emissivity can also be adjusted with external strain to the PVC layer, providing another way to attain the desired cooling effect. An upper filter is included to block most of the solar radiation and provide a transmittance of 96.7% in the atmospheric window. At high temperature, the adaptive emitter automatically activates radiative cooling. The net cooling power is up to 156.4 W$\cdot $m$^{-2}$ at an ambient temperature of 303 K. Our adaptive emitter still exhibits stable selective emissivity at different incident angles and heat transfer coefficients. At low temperature, the radiative cooling automatically deactivates, and the average emissivity decreases to only 3.8%. Therefore, our work not only provides new insights into the design of high-performance adaptive radiative coolers but also advances the development of intelligent thermal management.
|
|
Received: 30 January 2024
Published: 09 April 2024
|
|
PACS: |
42.79.Hp
|
(Optical processors, correlators, and modulators)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
44.40.+a
|
(Thermal radiation)
|
|
68.65.Ac
|
(Multilayers)
|
|
|
|
|
[1] | Liang J, Wu J, Guo J, Li H, Zhou X, Liang S, Qiu C W, and Tao G 2023 Natl. Sci. Rev. 10 nwac208 |
[2] | Su W, Cai P, Darkwa J, Hu M, Kokogiannakis G, Xu C, and Wang L 2023 Appl. Therm. Eng. 235 121305 |
[3] | Chae D, Kim M, Jung P H, Son S, Seo J, Liu Y, Lee B J, and Lee H 2020 ACS Appl. Mater. & Interfaces 12 8073 |
[4] | Raman A P, Anoma M A, Zhu L, Rephaeli E, and Fan S 2014 Nature 515 540 |
[5] | Fan S H and Li W 2022 Nat. Photonics 16 182 |
[6] | Liu Y N, Weng X L, Zhang P, Li W X, Gong Y, Zhang L, Han T C, Zhou P H, and Deng L J 2021 Chin. Phys. Lett. 38 034201 |
[7] | Li X G, Peoples J, Yao P, and Ruan X L 2021 ACS Appl. Mater. & Interfaces 13 21733 |
[8] | Mandal J, Yang Y, Yu N F, and Raman A P 2020 Joule 4 1350 |
[9] | Zhai Y, Ma Y G, David S N, Zhao D, Lou R, Tan G, Yang R, and Yin X 2017 Science 355 1062 |
[10] | Li J L, Liang Y, Li W, Xu N, Zhu B, Wu Z, Wang X Y, Fan S H, Wang M H, and Zhu J 2022 Sci. Adv. 8 eabj9756 |
[11] | Mandal J, Fu Y K, Overvig A C, Jia M X, Sun K R, Shi N N, Zhou H, Xiao X H, Yu N F, and Yang Y 2018 Science 362 315 |
[12] | Liu J W, Tang H J, Jiang C X, Wu S Q, Ye L, Zhao D L, and Zhou Z H 2022 Adv. Funct. Mater. 32 2206962 |
[13] | Xia H, Yin H Y, and Fan C Z 2023 J. Quant. Spectrosc. Radiat. Transfer 306 108659 |
[14] | Yin H Y and Fan C Z 2023 Results Phys. 45 106216 |
[15] | Yin H Y and Fan C Z 2023 Chin. Phys. Lett. 40 077801 |
[16] | Yang F B, Zhang Z R, Xu L J, Liu Z F, Jin P, Zhuang P F, Lei M, Liu J R, Jiang J H, Ouyang X, Marchesoni F, and Huang J P 2024 Rev. Mod. Phys. 96 015002 |
[17] | Zhang C X, Li T J, Xu L J, and Huang J P 2023 Chin. Phys. Lett. 40 054401 |
[18] | Wang J Y, Tan G, Yang R G, and Zhao D L 2022 Cell Rep. Phys. Sci. 3 101198 |
[19] | Zhang L P, Wang B, Li X B, Xu G P, Dou S L, Zhang X, Chen X, Zhao J P, Zhang K, and Li Y 2019 J. Mater. Chem. C 7 9878 |
[20] | Xia Z L, Fang Z, Zhang Z F, Shi K L, and Meng Z H 2020 ACS Appl. Mater. & Interfaces 12 27241 |
[21] | Mandal J, Jia M X, Overvig A, Fu Y K, Che E, Yu N F, and Yang Y 2019 Joule 3 3088 |
[22] | Liu Y, Tian Y P, Liu X J, Chen F Q, Caratenuto A, and Zheng Y 2022 Appl. Phys. Lett. 120 171704 |
[23] | Xu J Y, Chen D, and Meng S 2022 Sci. Adv. 8 eadd2392 |
[24] | Zhang W W, Qi H, Sun A T, Ren Y T, and Shi J W 2020 Opt. Express 28 20609 |
[25] | Kim M, Lee D, Yang Y, and Rho J 2021 Opto-Electron. Adv. 4 200006 |
[26] | Zhang D R, Wu B Y, Liu H T, Yang B, Sun Y S, and Wu X H 2023 Int. J. Thermal Sci. 185 108039 |
[27] | Jia Y L, Wang X X, Yin H Y, Yao H W, Wang J Q, and Fan C Z 2021 Appl. Opt. 60 5699 |
[28] | Ono M, Chen K F, Li W, and Fan S H 2018 Opt. Express 26 A777 |
[29] | Tang K C, Dong K C, Li J C, Gordon M P, Reichertz F G, Kim H, Rho Y, Wang Q, Lin C Y, Grigoropoulos C P, Javey A, Urban J J, Yao J, Levinson R, and Wu J 2021 Science 374 1504 |
[30] | Xie B W, Zhang W J, Zhao J M, Zheng C, and Liu L H 2024 Appl. Therm. Eng. 236 121751 |
[31] | Liang S R, Xu F, Li W X, Yang W X, Cheng S B, Yang H, Chen J, Yi Z, and Jiang P P 2023 Appl. Therm. Eng. 232 121074 |
[32] | Li B, Hu J, Chen C, Hu H, Zhong Y, Song R, Cao B, Peng Y, Xia X, Chen K, and Xia Z 2024 Nanophotonics 13 725 |
[33] | Huang J C, Zhang X K, Yu X, Tang G H, Wang X Y, and Du M 2024 Renewable Energy 224 120208 |
[34] | Bhupathi S, Wang S C, Wang G Y, and Long Y 2024 Nanophotonics 13 711 |
[35] | Heavens O S 1992 J. Mod. Opt. 39 189 |
[36] | Mandal P, Speck A, Ko C, and Ramanathan S 2011 Opt. Lett. 36 1927 |
[37] | Jepsen P U, Fischer B M, Thoman A, Helm H, Suh J Y, Lopez R, and Haglund R F 2006 Phys. Rev. B 74 205103 |
[38] | Smith N V 2001 Phys. Rev. B 64 155106 |
[39] | Wang H, Yang Y, and Wang L 2014 J. Appl. Phys. 116 123503 |
[40] | Barker A S, Verleur H W, and Guggenheim H J 1966 Phys. Rev. Lett. 17 1286 |
[41] | Dickinson E J F, Ekström H, and Fontes E 2014 Electrochem. Commun. 40 71 |
[42] | Musil J, Čiperová Z, Čerstvý R, and Haviar S 2019 Thin Solid Films 688 137216 |
[43] | Shah D, Patel D I, Roychowdhury T, Johnson B I, and Linford M R 2020 Appl. Surf. Sci. 526 146621 |
[44] | Ao X Z, Li B W, Zhao B, Hu M K, Ren H, Yang H L, Liu J, Cao J Y, Feng J S, Yang Y J, Qi Z M, Li L B, Zou C W, and Pei G 2022 Proc. Natl. Acad. Sci. USA 119 e2120557119 |
[45] | Xie H L, Yin H Y, Xia H, and Fan C Z 2024 Int. J. Heat Mass Transfer 222 125176 |
[46] | Liu J W, Zhang Y F, Li S, Valenzuela C, Shi S K, Jiang C X, Wu S Q, Ye L, Wang L, and Zhou Z H 2023 Chem. Eng. J. 453 139739 |
[47] | Han D, Ng B F, and Wan M P 2020 Sol. Energy Mater. Sol. Cells 206 110270 |
[48] | Xu L J, Yang S, Dai G L, and Huang J P 2020 ES Energy & Environ. 7 65 |
[49] | Yin H Y, Yao H W, Jia Y L, Wang J Q, and Fan C Z 2021 J. Phys. D 54 345501 |
[50] | Yao H W, Wang X X, Yin H Y, Jia Y L, Gao Y, Wang J Q, and Fan C Z 2021 Chin. Phys. B 30 064214 |
[51] | Jayamaha S E G, Wijeysundera N E, and Chou S K 1996 Build. Environ. 31 399 |
[52] | Xu X D, Gu J X, Zhao H P, Zhang X Y, Dou S L, Li Y, Zhao J P, Zhan Y H, and Li X F 2022 ACS Appl. Mater. & Interfaces 14 14313 |
[53] | Fan C Z, Xie H L, and Wang J H 2023 Sol. Energy 266 112192 |
[54] | Ying J W, Huang J Z, Qin S K, and Huang Y J 2021 Appl. Sci. 11 6830 |
[55] | Butler A and Argyropoulos C 2022 Appl. Therm. Eng. 211 118527 |
[56] | Large M C J, Mckenzie D R, and Large M I 1996 Opt. Commun. 128 307 |
[57] | Wang K, Luo G, Guo X, Li S, Liu Z, and Yang C 2021 Sol. Energy 225 245 |
[58] | Zhao B, Hu M, Ao X, Chen N, and Pei G 2019 Appl. Energy 236 489 |
[59] | Wu X Y, Yuan L, Weng X L, Qi L, Wei B, and He W T 2021 Nano Lett. 21 3908 |
[60] | Wang S C, Jiang T Y, Meng Y, Yang R G, Tan G, and Long Y 2021 Science 374 1501 |
[61] | Xie B W, Zhang W J, Zhao J M, and Liu L H 2022 Opt. Express 30 34314 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|