Chin. Phys. Lett.  2024, Vol. 41 Issue (4): 040301    DOI: 10.1088/0256-307X/41/4/040301
GENERAL |
Experimental Proposal on Non-Hermitian Skin Effect by Two-dimensional Quantum Walk with a Single Trapped Ion
Waner Hou1, Hao Tang1, Qin Xu1, and Yiheng Lin1,2*
1CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
2Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Cite this article:   
Waner Hou, Hao Tang, Qin Xu et al  2024 Chin. Phys. Lett. 41 040301
Download: PDF(1012KB)   PDF(mobile)(1030KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Non-Hermitian Hamiltonians are widely used in describing open systems with gain and loss, among which a key phenomenon is the non-Hermitian skin effect. Here we report an experimental scheme to realize a two-dimensional (2D) discrete-time quantum walk with non-Hermitian skin effect in a single trapped ion. It is shown that the coin and 2D walker states can be labeled in the spin of the ion and the coherent-state lattice of the ion motion, respectively. We numerically observe a directional bulk flow, whose orientations are controlled by dissipative parameters, showing the emergence of the non-Hermitian skin effect. We then discuss an experimental implementation of our scheme in a laser-controlled trapped Ca$^{+}$ ion. Our experimental proposal may be applicable to research of dissipative quantum walk systems and may be able to generalize to other platforms, such as superconducting circuits and atoms in cavity.
Received: 25 January 2024      Published: 16 April 2024
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  37.90.+j (Other topics in mechanical control of atoms, molecules, and ions)  
  42.50.-p (Quantum optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/4/040301       OR      https://cpl.iphy.ac.cn/Y2024/V41/I4/040301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Waner Hou
Hao Tang
Qin Xu
and Yiheng Lin
[1] Aharonov Y, Davidovich L, and Zagury N 1993 Phys. Rev. A 48 1687
[2] Kempe J 2003 Contemp. Phys. 44 307
[3] Kadian K, Garhwal S, and Kumar A 2021 Comput. Sci. Rev. 41 100419
[4] Childs A M and Goldstone J 2004 Phys. Rev. A 70 042312
[5] Portugal R 2016 Phys. Rev. A 93 062335
[6] Potoček V, Gábris A, Kiss T, and Jex I 2009 Phys. Rev. A 79 012325
[7] Chakraborty S, Novo L, Ambainis A, and Omar Y 2016 Phys. Rev. Lett. 116 100501
[8] Campbell E, Khurana A, and Montanaro A 2019 Quantum 3 167
[9] Farhi E, Goldstone J, and Gutmann S 2008 Theory Comput. 4 169
[10] Douglas B L and Wang J B 2008 J. Phys. A 41 075303
[11] Bruderer M and Plenio M B 2016 Phys. Rev. A 94 062317
[12] Kitagawa T, Rudner M S, Berg E, and Demler E 2010 Phys. Rev. A 82 033429
[13] Zhang W W, Goyal S K, Gao F, Sanders B C, and Simon C 2016 New J. Phys. 18 093025
[14] Xiao L, Zhan X, Bian Z H et al. 2017 Nat. Phys. 13 1117
[15] Bepari K, Malik S, Spannowsky M, and Williams S 2022 Phys. Rev. D 106 056002
[16] Rohde P P, Fitzsimons J F, and Gilchrist A 2012 Phys. Rev. Lett. 109 150501
[17] Chandrashekar C M and Busch T 2014 Sci. Rep. 4 6583
[18] Wang Y, Shang Y, and Xue P 2017 Quantum Inf. Process. 16 221
[19] Xue P, Zhang R, Qin H, Zhan X, Bian Z H, Li J, and Sanders B C 2015 Phys. Rev. Lett. 114 140502
[20] Zhan X, Xiao L, Bian Z H, Wang K K, Qiu X Z, Sanders B C, Yi W, and Xue P 2017 Phys. Rev. Lett. 119 130501
[21] Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y, and Siddiqi I 2017 Phys. Rev. X 7 031023
[22] Leibfried D, Blatt R, Monroe C, and Wineland D 2003 Rev. Mod. Phys. 75 281
[23] Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T, and Schaetz T 2009 Phys. Rev. Lett. 103 090504
[24] Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R, and Roos C F 2010 Phys. Rev. Lett. 104 100503
[25] Meng Y, Mei F, Chen G, and Jia S T 2020 Chin. Phys. B 29 070501
[26] Zhang H Q, Ai M Z, Cui J M, Han Y J, Li C F, and Guo G C 2021 Phys. Rev. A 104 022213
[27] Lin Q, Qin H, Wang K K, Xiao L, and Xue P 2020 Chin. Phys. B 29 110303
[28] Okuma N, Kawabata K, Shiozaki K, and Sato M 2020 Phys. Rev. Lett. 124 086801
[29] Li T Y, Sun J Z, Zhang Y S, and Yi W 2021 Phys. Rev. Res. 3 023022
[30] Zou D Y, Chen T, He W J, Bao J C, Lee C H, Sun H J, and Zhang X D 2021 Nat. Commun. 12 7201
[31] Li Y H, Liang C, Wang C Y, Lu C C, and Liu Y C 2022 Phys. Rev. Lett. 128 223903
[32] Yao Y Y, Xiang L, Guo Z X et al. 2023 Nat. Phys. 19 1459
[33] Lin C Y, Su W C, and Wu S T 2020 Quantum Inf. Process. 19 272
[34] Lin Q, Yi W, and Xue P 2023 Nat. Commun. 14 6283
[35] Lin Z G, Lin Y H, and Yi W 2022 Phys. Rev. A 106 063112
[36] Longhi S 2019 Phys. Rev. Res. 1 023013
[37] Liang Q, Xie D Z, Dong Z L, Li H W, Li H, Gadway B, Yi W, and Yan B 2022 Phys. Rev. Lett. 129 070401
[38] Lin Q, Li T Y, Xiao L, Wang K K, Yi W, and Xue P 2022 Phys. Rev. Lett. 129 113601
[39] Leibfried D, Meekhof D M, King B E, Monroe C, Itano W M, and Wineland D J 1996 Phys. Rev. Lett. 77 4281
[40] Kienzler D, Flühmann C, Negnevitsky V, Lo H Y, Marinelli M, Nadlinger D, and Home J P 2016 Phys. Rev. Lett. 116 140402
[41] Ding S Q, Maslennikov G, Hablützel R, Loh H Q, and Matsukevich D 2017 Phys. Rev. Lett. 119 150404
[42] Flühmann C and Home J P 2020 Phys. Rev. Lett. 125 043602
[43] Clark C R, Tinkey H N, Sawyer B C et al. 2021 Phys. Rev. Lett. 127 130505
[44] Lee P J, Brickman K A, Deslauriers L, Haljan P C, Duan L M, and Monroe C 2005 J. Opt. B 7 S371
[45] Monroe C, Meekhof D M, King B E, and Wineland D J 1996 Science 272 1131
[46] Hempel C, Lanyon B P, Jurcevic P et al. 2013 Nat. Photonics 7 630
[47] Valahu C H, Olaya-Agudelo V C, MacDonell R J et al. 2023 Nat. Chem. 15 1503
[48] Hempel C, Maier C, Romero J et al. 2018 Phys. Rev. X 8 031022
Related articles from Frontiers Journals
[1] Shujuan Yan, Qingyun Xu, Xinyu Hao, Ying Guo, and Jing Guo. Generation of Ultrafast Attosecond Magnetic Field from Ne Dimer in Circularly Polarized Laser Pulses[J]. Chin. Phys. Lett., 2023, 40(11): 040301
[2] Chang Niu and Sixia Yu. Wave-Particle Duality via Quantum Fisher Information[J]. Chin. Phys. Lett., 2023, 40(11): 040301
[3] Bin-Lin Chen and Dan-Bo Zhang. Variational Quantum Eigensolver with Mutual Variance-Hamiltonian Optimization[J]. Chin. Phys. Lett., 2023, 40(1): 040301
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 040301
[5] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 040301
[6] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 040301
[7] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 040301
[8] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 040301
[9] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 040301
[10] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 040301
[11] Li-Hua Lu, You-Quan Li. Quantum Approach to Fast Protein-Folding Time[J]. Chin. Phys. Lett., 2019, 36(8): 040301
[12] Hongye Yu, Yuliang Huang, Biao Wu. Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm[J]. Chin. Phys. Lett., 2018, 35(11): 040301
[13] E. Rezaei Fard, K. Aghayar. Quantum Adiabatic Evolution for Pattern Recognition Problem[J]. Chin. Phys. Lett., 2017, 34(12): 040301
[14] Bo-Wen Ma, Wan-Su Bao, Tan Li, Feng-Guang Li, Shuo Zhang, Xiang-Qun Fu. A Four-Phase Improvement of Grover's Algorithm[J]. Chin. Phys. Lett., 2017, 34(7): 040301
[15] Xing Chen, Zhen-Wei Zhang, Huan Zhao, Nuan-Rang Wang, Ren-Fu Yang, Ke-Ming Feng. Exact Solution to Spin Squeezing of the Arbitrary-Range Spin Interaction and Transverse Field Model[J]. Chin. Phys. Lett., 2016, 33(10): 040301
Viewed
Full text


Abstract