GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
|
|
|
|
Ultralight Scalar and Axion Dark Matter Detection with Long-Baseline Atom Interferometers |
Wei Zhao1*, Hui Liu1, and Xitong Mei2,3 |
1Shandong University of Aeronautics, Binzhou 256600, China 2State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 3University of Chinese Academy of Sciences, Beijing 100049, China
|
|
Cite this article: |
Wei Zhao, Hui Liu, and Xitong Mei 2024 Chin. Phys. Lett. 41 129501 |
|
|
Abstract Detecting dark matter remains one of the most challenging problems in modern physics. We propose a method to detect the coupling of ultralight scalar dark matter to quarks and gluons, as well as the coupling of ultralight axion dark matter to gluons, using long-baseline atom interferometers. Interactions between ultralight scalar and axion dark matter with quarks and gluons can induce oscillations in nuclear charge radii, consequently causing oscillations in atomic transition frequencies. We calculate the differential phase shift produced by these dark matter interactions in long-baseline atom interferometers, presenting constraints on the scalar dark matter coupling parameters $d_g$ and $d_{\hat{m}}$, as well as on the axion dark matter coupling parameter $1/f_a$. Our results are anticipated to improve existing bounds and complement bounds from other experiments.
|
|
Received: 01 July 2024
Published: 06 December 2024
|
|
PACS: |
95.35.+d
|
(Dark matter)
|
|
03.75.Dg
|
(Atom and neutron interferometry)
|
|
37.25.+k
|
(Atom interferometry techniques)
|
|
04.80.Nn
|
(Gravitational wave detectors and experiments)
|
|
|
|
|
[1] | Rubin V C, Ford , and Thonnard N 1978 Astrophys. J. 225 L107 | [2] | Allen S W, Schmidt R W, Fabian A C, and Ebeling H 2003 Mon. Not. R. Astron. Soc. 342 287 | [3] | Clowe D, Bradač M, Gonzalez A H, Markevitch M, Randall S W, Jones C et al. 2006 Astrophys. J. 648 L109 | [4] | Meng Y, Wang Z, Tao Y et al. (PandaX-4T Collaboration) 2021 Phys. Rev. Lett. 127 261802 | [5] | Aalbers J, Akerib D S, Akerlof C W et al. (LUX-ZEPLIN Collaboration) 2023 Phys. Rev. Lett. 131 041002 | [6] | Battaglieri M, Belloni A, Chou A et al. 2017 arXiv:1707.04591 [hep-ph] | [7] | Safronova M S, Budker D, DeMille D, Jackson Kimball D F, Derevianko A, and Clark C W 2018 Rev. Mod. Phys. 90 025008 | [8] | Antypas D, Banerjee A, Bartram C et al. 2022 arXiv:2203.14915 [hep-ex] | [9] | Adams C B, Aggarwal N, Agrawal A et al. 2022 arXiv:2203.14923 [hep-ex] | [10] | Graham P W, Kaplan D E, Mardon J, Rajendran S, and Terrano W A 2016 Phys. Rev. D 93 075029 | [11] | Arvanitaki A, Huang J, and Van Tilburg K 2015 Phys. Rev. D 91 015015 | [12] | Beloy K et al. (BACON Collaboration) 2021 Nature 591 564 | [13] | Stadnik Y V and Flambaum V V 2015 Phys. Rev. Lett. 114 161301 | [14] | Grote H and Stadnik Y V 2019 Phys. Rev. Res. 1 033187 | [15] | Vermeulen S M, Relton P, Grote H et al. 2021 Nature 600 424 | [16] | Cronin A D, Schmiedmayer J, and Pritchard D E 2009 Rev. Mod. Phys. 81 1051 | [17] | Tino G M 2021 Quantum Sci. Technol. 6 024014 | [18] | Morel L, Yao Z B, Cladé P, and Guellati-Khélifa S 2020 Nature 588 61 | [19] | Asenbaum P, Overstreet C, Kim M, Curti J, and Kasevich M A 2020 Phys. Rev. Lett. 125 191101 | [20] | Elliott E R, Aveline D C, Bigelow N P et al. 2023 Nature 623 502 | [21] | Dimopoulos S, Graham P W, Hogan J M, Kasevich M A, and Rajendran S 2008 Phys. Rev. D 78 122002 | [22] | Abend S, Allard B, Alonso I, Antoniadis J, Araújo H, Arduini G et al. 2024 AVS Quantum Sci. 6 024701 | [23] | Badurina L, Bentine E, Blas D, Bongs K, Bortoletto D, Bowcock T et al. 2020 J. Cosmol. Astropart. Phys. 2020(05) 011 | [24] | Abe M, Adamson P, Borcean M et al. 2021 Quantum Sci. Technol. 6 044003 | [25] | Canuel B, Bertoldi A, Amand L et al. 2018 Sci. Rep. 8 14064 | [26] | Canuel B, Abend S, Amaro-Seoane P et al. 2020 Class. Quantum Grav. 37 225017 | [27] | Zhan M S, Wang J, Ni W T et al. 2020 Int. J. Mod. Phys. D 29 1940005 | [28] | El-Neaj Y A, Alpigiani C, Amairi-Pyka S et al. 2020 EPJ Quantum Technol. 7 6 | [29] | Geraci A A and Derevianko A 2016 Phys. Rev. Lett. 117 261301 | [30] | Arvanitaki A, Graham P W, Hogan J M, Rajendran S, and Van Tilburg K 2018 Phys. Rev. D 97 075020 | [31] | Badurina L, Blas D, and McCabe C 2022 Phys. Rev. D 105 023006 | [32] | Di Pumpo F, Friedrich A, Geyer A, Ufrecht C, and Giese E 2022 Phys. Rev. D 105 084065 | [33] | Du Y, Murgui C, Pardo K, Wang Y, and Zurek K M 2022 Phys. Rev. D 106 095041 | [34] | Zhao W, Mei X, Gao D, Wang J, and Zhan M 2022 Int. J. Mod. Phys. D 31 2250037 | [35] | Zhao W, Gao D, Wang J, and Zhan M 2022 Gen. Relativ. Gravit. 54 41 | [36] | Di Pumpo F, Friedrich A, and Giese E 2024 AVS Quantum Sci. 6 014404 | [37] | Beadle C, Ellis S A R, Quevillon J, and Vuong P N H 2023 arXiv:2307.10362 [hep-ph] | [38] | Kim H, Lenoci A, Perez G, and Ratzinger W 2024 Phys. Rev. D 109 015030 | [39] | Gué J, Hees A, and Wolf P 2024 Phys. Rev. D 110 035005 | [40] | Flambaum V V and Mansour A J 2023 Phys. Rev. Lett. 131 113004 | [41] | Flambaum V V and Samsonov I B 2023 Phys. Rev. D 108 075022 | [42] | Dzuba V A and Flambaum V V 2023 Phys. Rev. Lett. 131 263002 | [43] | Kim H and Perez G 2024 Phys. Rev. D 109 015005 | [44] | Banerjee A, Budker D, Filzinger M et al. 2023 arXiv:2301.10784 [hep-ph] | [45] | Abel C, Ayres N J, Ban G et al. 2017 Phys. Rev. X 7 041034 | [46] | Schulthess I, Chanel E, Fratangelo A et al. 2022 Phys. Rev. Lett. 129 191801 | [47] | Touboul P, Métris G, Rodrigues M et al. (MICROSCOPE Collaboration) 2022 Phys. Rev. Lett. 129 121102 | [48] | Damour T and Donoghue J F 2010 Phys. Rev. D 82 084033 | [49] | Hees A, Minazzoli O, Savalle E, Stadnik Y V, and Wolf P 2018 Phys. Rev. D 98 064051 | [50] | Ubaldi L 2010 Phys. Rev. D 81 025011 | [51] | Workman R L, Burkert V D, Crede V et al. (Particle Data Group) 2022 Prog. Theor. Exp. Phys. 2022 083C01 | [52] | Kasevich M and Chu S 1991 Phys. Rev. Lett. 67 181 | [53] | Kasevich M and Chu S 1992 Appl. Phys. B 54 321 | [54] | Krane K 1991 Introductory Nuclear Physics (Wiley) | [55] | Schelfhout J S and McFerran J J 2021 Phys. Rev. A 104 022806 | [56] | Angeli I and Marinova K P 2013 At. Data Nucl. Data Tables 99 69 | [57] | Dzuba V A, Johnson W R, and Safronova M S 2005 Phys. Rev. A 72 022503 | [58] | Miyake H, Pisenti N C, Elgee P K, Sitaram A, and Campbell G K 2019 Phys. Rev. Res. 1 033113 | [59] | Hosten O, Engelsen N J, Krishnakumar R, and Kasevich M A 2016 Nature 529 505 | [60] | Cox K C, Greve G P, Weiner J M, and Thompson J K 2016 Phys. Rev. Lett. 116 093602 | [61] | Chiow S W, Kovachy T, Chien H C, and Kasevich M A 2011 Phys. Rev. Lett. 107 130403 | [62] | Rudolph J, Wilkason T, Nantel M et al. 2020 Phys. Rev. Lett. 124 083604 | [63] | Badurina L, Beniwal A, and McCabe C 2023 Phys. Rev. D 108 083016 | [64] | Touboul P, Métris G, Rodrigues M et al. (MICROSCOPE Collaboration) 2017 Phys. Rev. Lett. 119 231101 | [65] | Bergé J, Brax P, Métris G, Pernot-Borràs M, Touboul P, and Uzan J P 2018 Phys. Rev. Lett. 120 141101 | [66] | Hees A, Guéna J, Abgrall M, Bize S, and Wolf P 2016 Phys. Rev. Lett. 117 061301 | [67] | Kobayashi T, Takamizawa A, Akamatsu D et al. 2022 Phys. Rev. Lett. 129 241301 | [68] | Blum K, D'Agnolo R T, Lisanti M, and Safdi B R 2014 Phys. Lett. B 737 30 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|