Chin. Phys. Lett.  2024, Vol. 41 Issue (12): 127501    DOI: 10.1088/0256-307X/41/12/127501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ultralow-Temperature Heat Transport in Quantum Spin Liquid Candidates: A Brief Review
Na Li1, Xia Zhao2, and Xue-Feng Sun1*
1Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
2School of Physics Sciences, University of Science and Technology of China, Hefei 230026, China
Cite this article:   
Na Li, Xia Zhao, and Xue-Feng Sun 2024 Chin. Phys. Lett. 41 127501
Download: PDF(928KB)   PDF(mobile)(981KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Heat in solids can be transported by various quasiparticles, making low-temperature heat transport a powerful tool for probing charge-neutral excitations in quantum materials. In recent years, ultralow-temperature heat transport has been instrumental in detecting exotic excitations in quantum spin liquids (QSLs). A non-zero residual thermal conductivity, $\kappa_{0}$/$T$, serves as compelling evidence for the presence of itinerant spinons and the gapless nature of a disordered state. Additionally, the thermal Hall effect (THE) in QSLs can arise from contributions by spinons or Majorana fermions. In this review, we summarize key thermal conductivity findings from various QSL candidates, focusing on the role of spinons in both heat transport and phonon scattering. We also examine different experimental observations and the underlying mechanisms of THE in QSL candidates with three-dimensional pyrochlore structures, as well as two-dimensional honeycomb and triangular lattices. This review offers valuable insights and guidance for understanding ultralow-temperature heat transport in QSLs.
Received: 26 September 2024      Published: 17 December 2024
PACS:  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  75.50.-y (Studies of specific magnetic materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/12/127501       OR      https://cpl.iphy.ac.cn/Y2024/V41/I12/127501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Na Li
Xia Zhao
and Xue-Feng Sun
[1] Diep H T 2004 Frustrated spin system (World Scientific, Singapore)
[2] Lacroix C, Mendels P, and Mila F 2011 Introduction to Frustrated Magnetism: Materials, Experiments, Theory 164 (Springer, New York)
[3] Moessner R and Ramirez A P 2006 Phys. Today 59 24
[4] Ramirez A P 1994 Annu. Rev. Mater. Sci. 24 453
[5] Anderson P W 1973 Mater. Res. Bull. 8 153
[6] Balents L 2010 Nature 464 199
[7] Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003
[8] Broholm C, Cava R J, Kivelson S A et al. 2020 Science 367 eaay0668
[9] Chamorro J R, McQueen T M, and Tran T T 2021 Chem. Rev. 121 2898
[10] Knolle J and Moessner R 2019 Annu. Rev. Condens. Matter Phys. 10 451
[11] Balz C, Lake B, Reuther J et al. 2016 Nat. Phys. 12 942
[12] Klanjšek M, Zorko A, Žitko R et al. 2017 Nat. Phys. 13 1130
[13] Li Y S, Chen G, Tong W et al. 2015 Phys. Rev. Lett. 115 167203
[14] Han T H, Helton J S, Chu S Y et al. 2012 Nature 492 406
[15] Shen Y, Li Y D, Wo H L et al. 2016 Nature 540 559
[16] Paddison J A M, Daum M, Dun Z L et al. 2017 Nat. Phys. 13 117
[17] Yamashita S, Nakazawa Y, Oguni M et al. 2008 Nat. Phys. 4 459
[18] Li Y S, Liao H J, Zhang Z et al. 2015 Sci. Rep. 5 16419
[19] Zeng Z Y, Ma X Y, Wu S et al. 2022 Phys. Rev. B 105 L121109
[20] Tari A 2003 Specific heat of matter at low temperatures (Imperial College Press, London)
[21]Berman R 1976 Thermal conduction in Solids (Oxford University Press, Oxford)
[22] Yamashita M, Nakata N, Kasahara Y et al. 2009 Nat. Phys. 5 44
[23] Itou T, Oyamada A, Maegawa S et al. 2010 Nat. Phys. 6 673
[24] Yamashita S, Yamamoto T, Nakazawa Y et al. 2011 Nat. Commun. 2 275
[25] Yamashita M, Nakata N, Senshu Y et al. 2010 Science 328 1246
[26] Bourgeois-Hope P, Laliberté F, Lefrançois E et al. 2019 Phys. Rev. X 9 041051
[27] Ni J M, Pan B L, Song B Q et al. 2019 Phys. Rev. Lett. 123 247204
[28] Yamashita M, Sato Y, Tominaga T et al. 2020 Phys. Rev. B 101 140407
[29] Yamashita M 2019 J. Phys. Soc. Jpn. 88 083702
[30] Li Y S, Adroja D, Biswas P K et al. 2016 Phys. Rev. Lett. 117 097201
[31] Li Y D, Lu Y M, and Chen G 2017 Phys. Rev. B 96 054445
[32] Zhu Z, Maksimov P A, White S R, and Chernyshev A L 2017 Phys. Rev. Lett. 119 157201
[33] Xu Y, Zhang J, Li Y S, Yu Y J, Hong X C, Zhang Q M, and Li S Y 2016 Phys. Rev. Lett. 117 267202
[34] Rao X, Hussain G, Huang Q et al. 2021 Nat. Commun. 12 4949
[35] Li N, Huang Q, Yue X Y et al. 2020 Nat. Commun. 11 4216
[36] Murayama H, Sato Y, Taniguchi T et al. 2020 Phys. Rev. Res. 2 013099
[37] Guang S K, Li N, Luo R L et al. 2023 Phys. Rev. B 107 184423
[38] Li N, Rutherford A, Wang Y Y et al. 2024 Phys. Rev. B 110 134401
[39] Katsura H, Nagaosa N, and Lee P A 2010 Phys. Rev. Lett. 104 066403
[40] Matsumoto R, Shindou R, and Murakami S 2014 Phys. Rev. B 89 054420
[41] Romhányi J, Penc K, and Ganesh R 2015 Nat. Commun. 6 6805
[42] Lee H, Han J H, and Lee P A 2015 Phys. Rev. B 91 125413
[43] Chisnell R, Helton J S, Freedman D E et al. 2015 Phys. Rev. Lett. 115 147201
[44] Laurell P and Fiete G A 2018 Phys. Rev. B 98 094419
[45] Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, and Tokura Y 2010 Science 329 297
[46] Ideue T, Onose Y, Katsura H, Shiomi Y, Ishiwata S, Nagaosa N, and Tokura Y 2012 Phys. Rev. B 85 134411
[47] Hirschberger M, Chisnell R, Lee Y S, and Ong N P 2015 Phys. Rev. Lett. 115 106603
[48] Hirschberger M, Krizan J W, Cava R J, and Ong N P 2015 Science 348 106
[49] Watanabe D, Sugii K, Shimozawa M, Suzuki Y, Yajima T, Ishikawa H, Hiroi Z, Shibauchi T, Matsuda Y, and Yamashita 2016 Proc. Natl. Acad. Sci. USA 113 8653
[50] Doki H, Akazawa M, Lee H Y et al. 2018 Phys. Rev. Lett. 121 097203
[51] Plumb K W, Clancy J P, Sandilands L J et al. 2014 Phys. Rev. B 90 041112
[52] Kim H S and Kee H Y 2016 Phys. Rev. B 93 155143
[53] Johnson R D, Williams S C, Haghighirad A A et al. 2015 Phys. Rev. B 92 235119
[54] Cao H B, Banerjee A, Yan J Q et al. 2016 Phys. Rev. B 93 134423
[55] Sears J A, Songvilay M, Plumb K W et al. 2015 Phys. Rev. B 91 144420
[56] Ritter C 2016 J. Phys.: Conf. Ser. 746 012060
[57] Kubota Y, Tanaka H, Ono T, Narumi Y, and Kindo K 2015 Phys. Rev. B 91 094422
[58] Baek S H, Do S H, Choi K Y et al. 2017 Phys. Rev. Lett. 119 037201
[59] Sears J A, Zhao Y, Xu Z, Lynn J W, and Kim Y J 2017 Phys. Rev. B 95 180411
[60] Kasahara Y, Ohnishi T, Mizukami Y et al. 2018 Nature 559 227
[61] Yokoi T, Ma S, Kasahara Y et al. 2021 Science 373 568
[62] Lefrançois É, Grissonnanche G, Baglo J et al. 2022 Phys. Rev. X 12 021025
[63] Czajka P, Gao T, Hirschberger M et al. 2023 Nat. Mater. 22 36
[64] Yamashita M, Gouchi J, Uwatoko Y, Kurita N, and Tanaka H 2020 Phys. Rev. B 102 220404
[65] Strohm C, Rikken G L J A, and Wyder P 2005 Phys. Rev. Lett. 95 155901
[66] Sheng L, Sheng D N, and Ting C S 2006 Phys. Rev. Lett. 96 155901
[67] Qin T, Zhou J, and Shi J 2012 Phys. Rev. B 86 104305
[68] Mori M, Spencer-Smith A, Sushkov O P, and Maekawa S 2014 Phys. Rev. Lett. 113 265901
[69] Sugii K, Shimozawa M, Watanabe D et al. 2017 Phys. Rev. Lett. 118 145902
[70] Zhang L and Niu Q 2014 Phys. Rev. Lett. 112 085503
[71] Grissonnanche G, Thériault S, Gourgout A et al. 2020 Nat. Phys. 16 1108
[72] Chen L, Boulanger M E, Wang Z C, Tafti F, and Taillefer L 2022 Proc. Natl. Acad. Sci. USA 119 e2208016119
[73] Ideue T, Kurumaji T, Ishiwata S, and Tokura Y 2017 Nat. Mater. 16 797
[74] Boulanger M E, Grissonnanche G, Badoux S et al. 2020 Nat. Commun. 11 5325
[75] Zhang X T, Gao Y H, and Chen G 2024 Phys. Rep. 1070 1
[76] Li N, Neumann R R, Guang S K et al. 2023 Phys. Rev. B 108 L140402
Related articles from Frontiers Journals
[1] Menglin Li, Muhammad Asif Shakoori, Ruipeng Wang, and Haipeng Li. Phonon Thermal Transport at Interfaces of a Graphene/Vertically Aligned Carbon Nanotubes/Hexagonal Boron Nitride Sandwiched Heterostructure[J]. Chin. Phys. Lett., 2024, 41(1): 127501
[2] Yu Yang, Dengke Ma, and Lifa Zhang. Introduction of Asymmetry to Enhance Thermal Transport in Porous Metamaterials at Low Temperature[J]. Chin. Phys. Lett., 2023, 40(12): 127501
[3] Qiang-Kai-Lai Huang, Yun-Kai Liu, Pei-Chao Cao, Xue-Feng Zhu, and Ying Li. Two-Dimensional Thermal Regulation Based on Non-Hermitian Skin Effect[J]. Chin. Phys. Lett., 2023, 40(10): 127501
[4] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. Erratum: A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids [Chin. Phys. Lett. 37 (2020) 104401][J]. Chin. Phys. Lett., 2021, 38(3): 127501
[5] Yu Yang , XiuLing Li, and Lifa Zhang . Bidirectional and Unidirectional Negative Differential Thermal Resistance Effect in a Modified Lorentz Gas Model[J]. Chin. Phys. Lett., 2021, 38(1): 127501
[6] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids[J]. Chin. Phys. Lett., 2020, 37(10): 127501
[7] Wen-Xue Xu, Xin-Gang Liang. Molecular Dynamics Simulation of Effects of Stretching and Compressing on Thermal Conductivity of Aligned Silicon Oxygen Chains[J]. Chin. Phys. Lett., 2020, 37(4): 127501
[8] MING Yi, DING Xing. Quantum Heat Transfer in a Harmonic Chain with a Dephasing Reservoir[J]. Chin. Phys. Lett., 2014, 31(08): 127501
[9] DING Xing, MING Yi. Mechanisms Causing Ballistic Thermal Rectification[J]. Chin. Phys. Lett., 2014, 31(04): 127501
[10] BAI Su-Yuan, TANG Zhen-An, HUANG Zheng-Xing, Yu Jun, WANG Jing, LIU Gui-Chang. Preparation and Thermal Characterization of Diamond-Like Carbon Films[J]. Chin. Phys. Lett., 2009, 26(7): 127501
[11] BAI Su-Yuan, TANG Zhen-An, HUANG Zheng-Xing, YU Jun, WANG Jia-Qi. Thermal Conductivity Measurement of Submicron-Thick Aluminium Oxide Thin Films by a Transient Thermo-Reflectance Technique[J]. Chin. Phys. Lett., 2008, 25(2): 127501
[12] XU Xiao-Dong, MA Di, ZHANG Shu-Yi, LUO Ai-Hua, KIYOTAKA Wasa,. Thermal Diffusivity of Film/Substrate Structures Characterized by Transient Thermal Grating Method[J]. Chin. Phys. Lett., 2008, 25(1): 127501
Viewed
Full text


Abstract