|
|
Locally purified density operators for noisy quantum circuits |
Yuchen Guo1 and Shuo Yang1,2,3* |
1State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China 2Frontier Science Center for Quantum Information, Beijing 100084, China 3Hefei National Laboratory, Hefei 230088, China
|
|
Cite this article: |
Yuchen Guo and Shuo Yang 2024 Chin. Phys. Lett. 41 120302 |
|
|
Abstract Open quantum system simulations are essential for exploring novel quantum phenomena and evaluating noisy quantum circuits. In this Letter, we investigate whether mixed states generated from noisy quantum circuits can be efficiently represented by locally purified density operators (LPDOs). We map an LPDO of $N$ qubits to a pure state of size $2\times N$ defined on a ladder and introduce a unified method for managing virtual and Kraus bonds. We numerically simulate noisy random quantum circuits with depths of up to $d=40$ using fidelity and entanglement entropy as accuracy measures. The LPDO representation is effective in describing mixed states in both the quantum and classical regions; however, it encounters significant challenges at the quantum-classical critical point, restricting its applicability to the quantum region. In contrast, matrix product operators (MPO) successfully characterize the entanglement trend throughout the simulation, while the truncation in MPOs breaks the positivity condition required for a physical density matrix. This work advances our understanding of efficient mixed-state representations in open quantum systems and provides insights into the entanglement structure of noisy quantum circuits.
|
|
Received: 09 October 2024
Editors' Suggestion
Published: 15 November 2024
|
|
|
|
|
[1] | Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford University Press) | [2] | Rivas Á and Huelga S F 2012 Open Quantum Systems: An Introduction, 1st ed. (Springer Berlin, Heidelberg) | [3] | Hofer P P, Perarnau-Llobet M, Miranda L D M, Haack G, Silva R, Brask J B, and Brunner N 2017 New J. Phys. 19 123037 | [4] | Cattaneo M, De Chiara G, Maniscalco S, Zambrini R, and Giorgi G L 2021 Phys. Rev. Lett. 126 130403 | [5] | Schlimgen A W, Head-Marsden K, Sager L M, Narang P, and Mazziotti D A 2021 Phys. Rev. Lett. 127 270503 | [6] | Liu H Y, Sun T P, Wu Y C, and Guo G P 2021 Chin. Phys. Lett. 38 080301 | [7] | Kamakari H, Sun S N, Motta M, and Minnich A J 2022 PRX Quantum 3 010320 | [8] | Weiss U 2012 Quantum Dissipative Systems, 4th ed. (World Scientific) | [9] | Kessler E M, Giedke G, Imamoglu A, Yelin S F, Lukin M D, and Cirac J I 2012 Phys. Rev. A 86 012116 | [10] | Walter S, Nunnenkamp A, and Bruder C 2014 Phys. Rev. Lett. 112 094102 | [11] | Xu M, Tieri D A, Fine E C, Thompson J K, and Holland M J 2014 Phys. Rev. Lett. 113 154101 | [12] | Kimchi-Schwartz M E, Martin L, Flurin E, Aron C, Kulkarni M, Tureci H E, and Siddiqi I 2016 Phys. Rev. Lett. 116 240503 | [13] | Keßler H, Kongkhambut P, Georges C, Mathey L, Cosme J G, and Hemmerich A 2021 Phys. Rev. Lett. 127 043602 | [14] | de Groot C, Turzillo A, and Schuch N 2022 Quantum 6 856 | [15] | Ma R and Wang C 2023 Phys. Rev. X 13 031016 | [16] | Ma R, Zhang J H, Bi Z, Cheng M, and Wang C 2023 arXiv:2305.16399 [cond-mat.str-el] | [17] | Zhang J H, Ding K, Yang S, and Bi Z 2023 Phys. Rev. B 108 155123 | [18] | Nielsen M A and Chuang I L 2010 Computation and Quantum Information (Cambridge University Press) | [19] | Bremner M J, Montanaro A, and Shepherd D J 2017 Quantum 1 8 | [20] | Preskill J 2018 Quantum 2 79 | [21] | Sarovar M, Proctor T, Rudinger K, Young K, Nielsen E, and Blume-Kohout R 2020 Quantum 4 321 | [22] | von Lüpke U, Beaudoin F, Norris L M, Sung Y, Winik R, Qiu J Y, Kjaergaard M, Kim D, Yoder J, Gustavsson S, Viola L, and Oliver W D 2020 PRX Quantum 1 010305 | [23] | Cheng S, Cao C, Zhang C, Liu Y, Hou S Y, Xu P, and Zeng B 2021 Phys. Rev. Res. 3 023005 | [24] | Cattaneo M, Rossi M A C, García Pérez G, Zambrini R, and Maniscalco S 2023 PRX Quantum 4 010324 | [25] | Torre E G D and Roses M M 2023 arXiv:2308.01339 [quant-ph] | [26] | Verstraete F, Murg V, and Cirac J I 2008 Adv. Phys. 57 143 | [27] | Orús R 2014 Ann. Phys. 349 117 | [28] | Bridgeman J C and Chubb C T 2017 J. Phys. A 50 223001 | [29] | Cirac J I, Pérez-García D, Schuch N, and Verstraete F 2021 Rev. Mod. Phys. 93 045003 | [30] | Bai S C, Tang Y C, and Ran S J 2022 Chin. Phys. Lett. 39 100701 | [31] | Verstraete F and Cirac J I 2006 Phys. Rev. B 73 094423 | [32] | Pérez-García D, Verstraete F, Wolf M M, and Cirac J I 2007 Quantum Inf. Comput. 7 401 | [33] | Schollwöck U 2011 Ann. Phys. 326 96 | [34] | Verstraete F, Wolf M M, Perez-Garcia D, and Cirac J I 2006 Phys. Rev. Lett. 96 220601 | [35] | Schuch N, Wolf M M, Verstraete F, and Cirac J I 2007 Phys. Rev. Lett. 98 140506 | [36] | Schuch N, Cirac I, and Pérez-García D 2010 Ann. Phys. 325 2153 | [37] | Cirac J I, Poilblanc D, Schuch N, and Verstraete F 2011 Phys. Rev. B 83 245134 | [38] | Schuch N, Poilblanc D, Cirac J I, and Pérez-García D 2013 Phys. Rev. Lett. 111 090501 | [39] | Yang S, Lehman L, Poilblanc D, Van Acoleyen K, Verstraete F, Cirac J I, and Schuch N 2014 Phys. Rev. Lett. 112 036402 | [40] | Yang S, Wahl T B, Tu H H, Schuch N, and Cirac J I 2015 Phys. Rev. Lett. 114 106803 | [41] | Verstraete F, García-Ripoll J J, and Cirac J I 2004 Phys. Rev. Lett. 93 207204 | [42] | Zwolak M and Vidal G 2004 Phys. Rev. Lett. 93 207205 | [43] | las Cuevas G D, Schuch N, Pérez-García D, and Cirac J I 2013 New J. Phys. 15 123021 | [44] | Werner A H, Jaschke D, Silvi P, Kliesch M, Calarco T, Eisert J, and Montangero S 2016 Phys. Rev. Lett. 116 237201 | [45] | Guo Y and Yang S 2022 PRX Quantum 3 040313 | [46] | Guo Y and Yang S 2024 Commun. Phys. 7 322 | [47] | Li W J, Xu K, Fan H, Ran S J, and Su G 2023 arXiv:2308.06900 [quant-ph] | [48] | Torlai G, Wood C J, Acharya A, Carleo G, Carrasquilla J, and Aolita L 2023 Nat. Commun. 14 2858 | [49] | Guo Y, Zhang J H, Yang S, and Bi Z 2024 arXiv:2403.16978 [cond-mat.str-el] | [50] | Noh K, Jiang L, and Fefferman B 2020 Quantum 4 318 | [51] | Li Z, Sang S, and Hsieh T H 2023 Phys. Rev. B 107 014307 | [52] | Zhang M, Wang C, Dong S, Zhang H, Han Y, and He L 2022 Phys. Rev. A 106 052430 | [53] | Zhang Q and Zhang G M 2022 Chin. Phys. Lett. 39 050302 | [54] | See supplemental material for details. | [55] | Bravyi S, Hastings M B, and Verstraete F 2006 Phys. Rev. Lett. 97 050401 | [56] | Hastings M B 2007 J. Stat. Mech.: Theory Exp. 2007 P08024 | [57] | Eisert J, Cramer M, and Plenio M B 2010 Rev. Mod. Phys. 82 277 | [58] | Nahum A, Ruhman J, Vijay S, and Haah J 2017 Phys. Rev. X 7 031016 | [59] | Fisher M P A, Khemani V, Nahum A, and Vijay S 2023 Annu. Rev. Condens. Matter Phys. 14 335 | [60] | Kingma D P and Ba J 2017 arXiv:1412.6980 [cs.LG] | [61] | Guo Y and Yang S 2023 npj Quantum Inf. 9 11 | [62] | Li Y, Chen X, and Fisher M P A 2018 Phys. Rev. B 98 205136 | [63] | Skinner B, Ruhman J, and Nahum A 2019 Phys. Rev. X 9 031009 | [64] | Li Y, Chen X, and Fisher M P A 2019 Phys. Rev. B 100 134306 | [65] | Vasseur R, Potter A C, You Y Z, and Ludwig A W W 2019 Phys. Rev. B 100 134203 | [66] | Yang Z C, Li Y, Fisher M P A, and Chen X 2022 Phys. Rev. B 105 104306 | [67] | Guo Y, Zhang J H, Bi Z, and Yang S 2023 Phys. Rev. Res. 5 043069 | [68] | Diehl S, Tomadin A, Micheli A, Fazio R, and Zoller P 2010 Phys. Rev. Lett. 105 015702 | [69] | Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, and Monroe C 2017 Nature 551 601 | [70] | Heyl M 2018 Rep. Prog. Phys. 81 054001 | [71] | Muniz J A, Barberena D, Lewis-Swan R J, Young D J, Cline J R K, Rey A M, and Thompson J K 2020 Nature 580 602 | [72] | Marino J, Eckstein M, Foster M S, and Rey A M 2022 Rep. Prog. Phys. 85 116001 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|