Chin. Phys. Lett.  2024, Vol. 41 Issue (11): 119701    DOI: 10.1088/0256-307X/41/11/119701
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Observations of Fast Radio Variations in Microquasars by FAST
Wei Wang*
Department of Astronomy, School of Physics and Technology, Wuhan University, Wuhan 430072, China
Cite this article:   
Wei Wang 2024 Chin. Phys. Lett. 41 119701
Download: PDF(4828KB)   PDF(mobile)(4886KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Microquasars are the compact objects generally including accreting black holes which produce relativistic jets. The physical mechanisms of jet launching, collimation, and acceleration are poorly understood. Microquasars show strong variability in multi-wavelength observations. In x-rays, the sources show the fast variation features down to millisecond time scales, with the prominent quasiperiodic oscillations (QPOs) around 0.1 Hz–tens of Hz in light curves, however, physical origin of QPOs is still uncertain. FAST as the largest radio telescope provides the opportunity to study fast variability of both radio flux and polarization in microquasars. In the FAST observations from 2020–2022, we reported the first evidence of radio subsecond quasi-periodic oscillations of GRS 1915+105, providing the direct link between QPOs and the dynamics of relativistic jets. These QPOs with the centroid frequency around 5 Hz are transient, accompanied with strong evolution of the spectral index. Combined with multiwavelength observations, we discuss the possible physical models to produce radio QPOs in BH systems: the helical motion of jet knots or precession of the jet base. In near future, high time resolution radio monitoring of microquasars based on FAST is expected to discover more new phenomena in black hole systems, which will be important for understanding the physics in strong gravity.
Received: 22 May 2024      Published: 11 November 2024
PACS:  97.60.Lf (Black holes)  
  97.80.Jp (X-ray binaries)  
  98.70.Dk (Radio sources)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/11/119701       OR      https://cpl.iphy.ac.cn/Y2024/V41/I11/119701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Wang
[1] Zensus J A 1997 Annu. Rev. Astron. Astrophys. 35 607
[2] Mirabel I F and Rodríguez L F 1999 Annu. Rev. Astron. Astrophys. 37 409
[3] Remillard R A and McClintock J E 2006 Annu. Rev. Astron. Astrophys. 44 49
[4]Osterbrock D E and Ferland G J 2006 Astrophysics of Gas Nebulae and Active Galactic Nuclei (Sausalito, California: University Science Books)
[5] Ho L C 2008 Annu. Rev. Astron. Astrophys. 46 475
[6] Reynolds C S 2021 Annu. Rev. Astron. Astrophys. 59 117
[7] Ingram A R and Motta S E 2019 New Astron. Rev. 85 101524
[8] Motta S, Homan J, Muñoz-Darias T et al. 2012 Mon. Not. R. Astron. Soc. 427 595
[9]Belloni T M, Klein-Wolt M, Mendez M et al. 2000 Astron. Astrophys. 355 271
[10] Zhu H, Wang W, and Zhu Z 2024 Astrophys. J. 974 303
[11] Zhu H and Wang W 2024 Astrophys. J. 968 106
[12] Belloni T M and Altamirano D 2013 Mon. Not. R. Astron. Soc. 432 19
[13] Belloni T M, Sanna A, and Méndez M 2012 Mon. Not. R. Astron. Soc. 426 1701
[14] Ma X, Tao L, Zhang S N et al. 2021 Nat. Astron. 5 94
[15] Zhu H F, Chen X, Wang W et al. 2023 Mon. Not. R. Astron. Soc. 523 4394
[16] Jin Y J, Wang W, Chen X et al. 2023 Astrophys. J. 953 33
[17] Liu H X, Huang Y, Bu Q C et al. 2022 Astrophys. J. 938 108
[18] Chen X, Wang W, You B et al. 2022 Mon. Not. R. Astron. Soc. 513 4875
[19] Chen X, Wang W, Tian P F et al. 2022 Mon. Not. R. Astron. Soc. 517 182
[20] Liu Q, Wang W, Yang W, Chen X, and Wu H J 2024 J. High Energy Astrophys. 41 22
[21] Shui Q C, Zhang S, Chen Y P et al. 2023 Astrophys. J. 943 165
[22] Zhu Z, Chen X, and Wang W 2024 Mon. Not. R. Astron. Soc. 529 4602
[23]Tagger M and Pellat R 1999 Astron. Astrophys. 349 1003
[24] Chakrabarti S K, Debnath D, Nandi A, and Pal P S 2008 Astron. Astrophys. 489 L41
[25] Ingram A, Done C, and Fragile P C 2009 Mon. Not. R. Astron. Soc. 397 L101
[26] Stevens A L and Uttley P 2016 Mon. Not. R. Astron. Soc. 460 2796
[27] Jorstad S G, Marscher A P, Morozova D A et al. 2017 Astrophys. J. 846 98
[28] Margon B 1984 Annu. Rev. Astron. Astrophys. 22 507
[29] Mirabel I F and Rodríguez L F 1994 Nature 371 46
[30] Koljonen K I I and Hovatta T 2021 Astron. Astrophys. 647 A173
[31] Motta S E, Kajava J J E, Giustini M et al. 2021 Mon. Not. R. Astron. Soc. 503 152
[32] Klein-Wolt M, Fender R P, Pooley G G et al. 2002 Mon. Not. R. Astron. Soc. 331 745
[33] Fender R P, Rayner D, McCormick D G et al. 2002 Mon. Not. R. Astron. Soc. 336 39
[34] Zhang S N, Li T P, Lu F J et al. 2020 Sci. Chin. Phys. Mech. & Astron. 63 249502
[35] Jiang P, Tang N Y, Hou L G et al. 2020 Res. Astron. Astrophys. 20 064
[36] Hotan A W, van Straten W, and Manchester R N 2004 Proc. Natl. Acad. Sci. USA 21 302
[37] Tian P F, Zhang P, Wang W et al. 2023 J. High Energy Astrophys. 39 43
[38] van Straten W and Bailes M 2011 Proc. Natl. Acad. Sci. USA 28 1
[39] van Straten W, Manchester R N, Johnston S, and Reynolds J E 2010 Proc. Natl. Acad. Sci. USA 27 104
[40] Heiles C, Perillat P, Nolan M et al. 2001 Publ. Astron. Soc. Pac. 113 1274
[41] Fender R and Belloni T 2004 Annu. Rev. Astron. Astrophys. 42 317
[42] McClintock J E, Shafee R, Narayan R et al. 2006 Astrophys. J. 652 518
[43] Misra R, Rawat D, Yadav J S, and Jain P 2020 Astrophys. J. Lett. 889 L36
[44] Zhang L, Méndez M, Altamirano D et al. 2020 Mon. Not. R. Astron. Soc. 494 1375
[45] Rodriguez L F and Mirabel I F 1999 Astrophys. J. 511 398
[46] Tian P F, Zhang P, Wang W et al. 2023 Nature 621 271
[47] Fender R P, Belloni T M, and Gallo E 2004 Mon. Not. R. Astron. Soc. 355 1105
[48]Only in the observations of 2021, the weak and sparse QPO signal around 10 Hz was detected, which sometimes disappeared for more than ten seconds, and then appeared with a typical duration of $\sim$ 1 s.
[49] Ding Y Z, Wang W, Zhang P et al. 2021 Mon. Not. R. Astron. Soc. 503 6045
[50] Tian P F, Zhang P, Yang W, Wang W, and Wang P 2024 J. High Energy Astrophys. 42 27
[51]Timmer J and Köenig M 1995 Astron. Astrophys. 300 707
[52]Motch C et al. 1982 Astron. Astrophys. 119 171
[53] Kalamkar M, Casella P, Uttley P et al. 2016 Mon. Not. R. Astron. Soc. 460 3284
[54] Hynes R I, Haswell C A, Cui W et al. 2003 Mon. Not. R. Astron. Soc. 345 292
[55] Zhang P and Wang Z 2021 Astrophys. J. 914 1
[56] Ren G W, Ding N, Zhang X et al. 2021 Mon. Not. R. Astron. Soc. 506 3791
[57] Raiteri C M, Villata M, Aller H D et al. 2001 Astron. Astrophys. 377 396
[58] Bhatta G 2017 Astrophys. J. 847 7
[59] Jaron F, Sharma R, Massi M et al. 2017 Mon. Not. R. Astron. Soc. 471 L110
[60] Pooley G G and Fender R P 1997 Mon. Not. R. Astron. Soc. 292 925
[61] Rodríguez L F and Mirabel I F 1997 Astrophys. J. Lett. 474 L123
[62] Ackermann M, Ajello M, Albert A et al. 2015 Astrophys. J. Lett. 813 L41
[63] Chen L and Zhang B 2021 Astrophys. J. 906 105
[64] Zhou J N, Wang Z X, Chen L et al. 2018 Nat. Commun. 9 4599
[65] Sarkar A, Gupta A C, Chitnis V R, and Wiita P J 2021 Mon. Not. R. Astron. Soc. 501 50
[66] Jorstad S G, Marscher A P, Raiteri C M et al. 2022 Nature 609 265
[67] Dong L, Zhang H, and Giannios D 2020 Mon. Not. R. Astron. Soc. 494 1817
[68] Reid M J, McClintock J E, Steiner J F et al. 2014 Astrophys. J. 796 2
[69]Rybicki G B and Lightman A P 1979 Radiative Processes in Astrophysics (New York: Wiley)
[70] Wilkins D C 1972 Phys. Rev. D 5 814
[71] Lei W H, Zhang B, and Gao H 2013 Astrophys. J. 762 98
[72] Neilsen J, Homan J, Steiner J F et al. 2020 Astrophys. J. 902 152
[73] Miller J M, Zoghbi A, Raymond J et al. 2020 Astrophys. J. 904 30
[74] Ratheesh A, Matt G, Tombesi F et al. 2021 Astron. Astrophys. 655 A96
[75] Balakrishnan M, Miller J M, Reynolds M T et al. 2021 Astrophys. J. 909 41
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 119701
[2] Chang-Qing Liu, Chi-Kun Ding, Ji-Liang Jing. Effects of Homogeneous Plasma on Strong Gravitational Lensing of Kerr Black Holes[J]. Chin. Phys. Lett., 2017, 34(9): 119701
[3] Mahamat Saleh, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Energy and Thermodynamics of the Quantum-Corrected Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 119701
[4] Hao Tang, Yu Song, Rui-Hong Yue, Cheng-Yi Sun. Destroying a Peldan Electrostatic Solution Black Hole[J]. Chin. Phys. Lett., 2017, 34(4): 119701
[5] Yu Song, Hao Tang, De-Cheng Zou, Rui-Hong Yue, Cheng-Yi Sun. Destroying Extremal Kerr–Newman-AdS Black Holes with Test Particles[J]. Chin. Phys. Lett., 2017, 34(3): 119701
[6] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 119701
[7] HUANG Chang-Yin, GONG Xiao-Long, WANG Ding-Xiong. Energy Extraction from a Black Hole and Its Influence on X-Ray Spectra[J]. Chin. Phys. Lett., 2014, 31(12): 119701
[8] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 119701
[9] WANG Zhi-Yun, CHEN Pei-Jie, ZHANG Liang-Ying. Stochastic Resonance of a General Relativistic Accretion Disk[J]. Chin. Phys. Lett., 2013, 30(9): 119701
[10] M. Akbar, Nema Salem, S. A. Hussein. Thermodynamics of the Bardeen Regular Black Hole[J]. Chin. Phys. Lett., 2012, 29(7): 119701
[11] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 119701
[12] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 119701
[13] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 119701
[14] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 119701
[15] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 119701
Viewed
Full text


Abstract