Chin. Phys. Lett.  2024, Vol. 41 Issue (11): 117404    DOI: 10.1088/0256-307X/41/11/117404
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Two Distinct Charge Orders in Infinite-Layer PrNiO$_{2+\delta}$ Revealed by Resonant X-Ray Diffraction
Xiaolin Ren1,2, Ronny Sutarto3, Qiang Gao1, Qisi Wang4, Jiarui Li5, Yao Wang6, Tao Xiang1,2,7, Jiangping Hu1,2, J. Chang4, Riccardo Comin5, X. J. Zhou1,2,7,8*, and Zhihai Zhu1,2,8*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
4Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
5Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
6Department of Physics and Astronomy, Clemson University, Clemson, SC 29631, USA
7Beijing Academy of Quantum Information Sciences, Beijing 100193, China
8Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Xiaolin Ren, Ronny Sutarto, Qiang Gao et al  2024 Chin. Phys. Lett. 41 117404
Download: PDF(4061KB)   PDF(mobile)(3494KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Research of infinite-layer nickelates has unveiled a broken translation symmetry, which has sparked significant interest in its root, its relationship to superconductivity, and its comparison to charge order in cuprates. In this study, resonant x-ray scattering measurements were performed on thin films of infinite-layer PrNiO$_{2+\delta}$. The results show significant differences in the superlattice reflection at the Ni $L_{3}$ absorption edge compared to that at the Pr $M_{5}$ resonance in their dependence on energy, temperature, and local symmetry. These differences point to two distinct charge orders, although they share the same in-plane wavevectors. It is suggested that these dissimilarities could be linked to the excess oxygen dopants, given that the resonant reflections were observed in an incompletely reduced PrNiO$_{2+\delta}$ film. Furthermore, azimuthal analysis indicates that the oxygen ligands likely play a crucial role in the charge modulation revealed at the Ni $L_{3}$ resonance.
Received: 05 September 2024      Express Letter Published: 14 October 2024
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.25.-q (Properties of superconductors)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.20.-z (Theories and models of superconducting state)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/11/117404       OR      https://cpl.iphy.ac.cn/Y2024/V41/I11/117404
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaolin Ren
Ronny Sutarto
Qiang Gao
Qisi Wang
Jiarui Li
Yao Wang
Tao Xiang
Jiangping Hu
J. Chang
Riccardo Comin
X. J. Zhou
and Zhihai Zhu
[1] Li D F, Lee K, Wang B Y et al. 2019 Nature 572 624
[2] Osada M, Wang B Y, Goodge B H et al. 2020 Nano Lett. 20 5735
[3] Zeng S W, Tang C S, Yin X M et al. 2020 Phys. Rev. Lett. 125 147003
[4] Gu Q Q, Li Y Y, Wan S Y et al. 2020 Nat. Commun. 11 6027
[5] Gao Q, Zhao Y, Zhou X J, and Zhu Z 2021 Chin. Phys. Lett. 38 077401
[6] Pan G A, Segedin D F, LaBollita H et al. 2022 Nat. Mater. 21 160
[7] Anisimov V I, Bukhvalov D, and Rice T M 1999 Phys. Rev. B 59 7901
[8] Lee K W and Pickett W E 2004 Phys. Rev. B 70 165109
[9] Jiang P, Si L, Liao Z, and Zhong Z 2019 Phys. Rev. B 100 201106
[10] Choi M Y, Lee K W, and Pickett W E 2020 Phys. Rev. B 101 020503
[11] Botana A S and Norman M R 2020 Phys. Rev. X 10 011024
[12] Lu H, Rossi M, Nag A et al. 2021 Science 373 213
[13] Ghiringhelli G, Le Tacon M, Minola M et al. 2012 Science 337 821
[14] Chang J, Blackburn E, Holmes A T et al. 2012 Nat. Phys. 8 871
[15] Achkar A J, Sutarto R, Mao X et al. 2012 Phys. Rev. Lett. 109 167001
[16] Blackburn E, Chang J, Hücker M et al. 2013 Phys. Rev. Lett. 110 137004
[17] Comin R, Frano A, Yee M M et al. 2014 Science 343 390
[18] da Silva Neto E H, Aynajian P, Frano A et al. 2014 Science 343 393
[19] Tabis W, Li Y, Le Tacon M et al. 2014 Nat. Commun. 5 5875
[20] da Silva Neto E H, Comin R, He F Z et al. 2015 Science 347 282
[21] Gerber S, Jang H, Nojiri H et al. 2015 Science 350 949
[22] Comin R and Damascelli A 2016 Annu. Rev. Condens. Matter Phys. 7 369
[23] Rossi M, Osada M, Choi J et al. 2022 Nat. Phys. 18 869
[24] Krieger G, Martinelli L, Zeng S et al. 2022 Phys. Rev. Lett. 129 027002
[25] Tam C C, Choi J, Ding X et al. 2022 Nat. Mater. 21 1116
[26] Hepting M, Li D, Jia C J et al. 2020 Nat. Mater. 19 381
[27] Zhang G M, Yang Y F, and Zhang F C 2020 Phys. Rev. B 101 020501
[28] Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179
[29] Peng C, Jiang H C, Moritz B et al. 2023 Phys. Rev. B 108 245115
[30] Shen Y, Qin M, and Zhang G M 2023 Phys. Rev. B 107 165103
[31] Onari S and Kontani H 2023 Phys. Rev. B 108 L241119
[32] Chen H H, Yang Y F, Zhang G M et al. 2023 Nat. Commun. 14 5477
[33] Oppliger J, Küspert J, Dippel A C et al. 2024 arXiv:2404.17795 [cond-mat.supr-con]
[34] Sachdev S and La Placa R 2013 Phys. Rev. Lett. 111 027202
[35] Fujita K, Hamidian M H, Edkins S D et al. 2014 Proc. Natl. Acad. Sci. USA 111 E3026
[36] Comin R, Sutarto R, He F et al. 2015 Nat. Mater. 14 796
[37] Forgan E M, Blackburn E, Holmes A T et al. 2015 Nat. Commun. 6 10064
[38] Ren X L, Li J R, Chen W C et al. 2023 Commun. Phys. 6 341
[39] Gao Q, Fan S Y, Wang Q S et al. 2024 Nat. Commun. 15 5576
[40] Hawthorn D G, He F, Venema L et al. 2011 Rev. Sci. Instrum. 82 073104
[41] Rossi M, Lu H, Nag A et al. 2021 Phys. Rev. B 104 L220505
[42] McMahon C, Achkar A J, da Silva Neto E H et al. 2020 Sci. Adv. 6 eaay0345
[43] Jiang M, Berciu M, and Sawatzky G A 2020 Phys. Rev. Lett. 124 207004
[44] Jiang M, Berciu M, and Sawatzky G A 2022 Phys. Rev. B 106 115150
[45] Lee K, Goodge B H, Li D F et al. 2020 APL Mater. 8 041107
[46] Osada M, Wang B Y, Goodge B H et al. 2021 Adv. Mater. 33 2104083
[47] Jorgensen J D, Dabrowski B, Pei S Y et al. 1988 Phys. Rev. B 38 11337
[48] Wells B O, Lee Y S, Kastner M A et al. 1997 Science 277 1067
[49] Parzyck C T, Gupta N K, Wu Y et al. 2024 Nat. Mater. 23 486
[50] Raji A, Krieger G, Viart N et al. 2023 Small 19 2304872
[51] Krishna J, LaBollita H, Fumega A O, Pardo V, and Botana A S 2020 Phys. Rev. B 102 224506
Related articles from Frontiers Journals
[1] Yunqi Ji, Xiaohan Wang, Xiaohe Li, Wenting Tang, Xinyang Li, Xin Wang, Fangfei Li, Liang Li, and Qiang Zhou. Unveiling a Novel Insulator-to-Metal Transition in La$_{2}$NiO$_{4+\delta}$: Challenging High-Temperature Superconductivity Claimed for Single-Layer Lanthanum Nickelates[J]. Chin. Phys. Lett., 2024, 41(9): 117404
[2] Zhiming Pan, Chen Lu, Fan Yang, and Congjun Wu. Effect of Rare-Earth Element Substitution in Superconducting R$_3$Ni$_2$O$_7$ under Pressure[J]. Chin. Phys. Lett., 2024, 41(8): 117404
[3] Jie-Ran Xue and Fa Wang. Magnetism and Superconductivity in the $t$–$J$ Model of La$_3$Ni$_2$O$_7$ Under Multiband Gutzwiller Approximation[J]. Chin. Phys. Lett., 2024, 41(5): 117404
[4] Qing Li, Ying-Jie Zhang, Zhe-Ning Xiang, Yuhang Zhang, Xiyu Zhu, and Hai-Hu Wen. Signature of Superconductivity in Pressurized La$_{4}$Ni$_{3}$O$_{10}$[J]. Chin. Phys. Lett., 2024, 41(1): 117404
[5] Kun Jiang, Ziqiang Wang, and Fu-Chun Zhang. High-Temperature Superconductivity in La$_3$Ni$_2$O$_7$[J]. Chin. Phys. Lett., 2024, 41(1): 117404
[6] Yang Shen, Mingpu Qin, and Guang-Ming Zhang. Effective Bi-Layer Model Hamiltonian and Density-Matrix Renormalization Group Study for the High-$T_{\rm c}$ Superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ under High Pressure[J]. Chin. Phys. Lett., 2023, 40(12): 117404
[7] Jun Hou, Peng-Tao Yang, Zi-Yi Liu, Jing-Yuan Li, Peng-Fei Shan, Liang Ma, Gang Wang, Ning-Ning Wang, Hai-Zhong Guo, Jian-Ping Sun, Yoshiya Uwatoko, Meng Wang, Guang-Ming Zhang, Bo-Sen Wang, and Jin-Guang Cheng. Emergence of High-Temperature Superconducting Phase in Pressurized La$_{3}$Ni$_{2}$O$_7$ Crystals[J]. Chin. Phys. Lett., 2023, 40(11): 117404
[8] Run Lv, Wenqian Tu, Dingfu Shao, Yuping Sun, and Wenjian Lu. Physical Origin of Color Changes in Lutetium Hydride under Pressure[J]. Chin. Phys. Lett., 2023, 40(11): 117404
[9] Bin Li, Yeqian Yang, Yuxiang Fan, Cong Zhu, Shengli Liu, and Zhixiang Shi. Theoretical Predictions on Superconducting Phase above Room Temperature in Lutetium-Beryllium Hydrides at High Pressures[J]. Chin. Phys. Lett., 2023, 40(9): 117404
[10] Yi-Na Huang, Zhao-Feng Ye, Da-Yong Liu, and Hang-Qiang Qiu. Role of Lanthanide in the Electronic Properties of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ ($Ln$ = Sm and Ho) Superconductors[J]. Chin. Phys. Lett., 2023, 40(9): 117404
[11] Liang Ma, Lingrui Wang, Yifang Yuan, Haizhong Guo, and Hongbo Wang. High-Temperature Superconductivity in Doped Boron Clathrates[J]. Chin. Phys. Lett., 2023, 40(8): 117404
[12] Yueying Li, Xiangbin Cai, Wenjie Sun, Jiangfeng Yang, Wei Guo, Zhengbin Gu, Ye Zhu, and Yuefeng Nie. Synthesis of Chemically Sharp Interface in NdNiO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2023, 40(7): 117404
[13] Fankai Xie, Tenglong Lu, Ze Yu, Yaxian Wang, Zongguo Wang, Sheng Meng, and Miao Liu. Lu–H–N Phase Diagram from First-Principles Calculations[J]. Chin. Phys. Lett., 2023, 40(5): 117404
[14] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Erratum: Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors [Chin. Phys. Lett. 39, 097401 (2022)][J]. Chin. Phys. Lett., 2023, 40(5): 117404
[15] X. He, C. L. Zhang, Z. W. Li, S. J. Zhang, B. S. Min, J. Zhang, K. Lu, J. F. Zhao, L. C. Shi, Y. Peng, X. C. Wang, S. M. Feng, J. Song, L. H. Wang, V. B. Prakapenka, S. Chariton, H. Z. Liu, and C. Q. Jin. Superconductivity Observed in Tantalum Polyhydride at High Pressure[J]. Chin. Phys. Lett., 2023, 40(5): 117404
Viewed
Full text


Abstract