Chin. Phys. Lett.  2024, Vol. 41 Issue (11): 111101    DOI: 10.1088/0256-307X/41/11/111101
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Discontinuities of Banana Integrals in Dispersion Relation Representation
Xu-Liang Chen1, Peng-Fei Yang1, and Wei Chen1,2*
1School of Physics, Sun Yat-sen University, Guangzhou 510275, China
2Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics, Chinese Academy of Sciences, Huizhou 516000, China
Cite this article:   
Xu-Liang Chen, Peng-Fei Yang, and Wei Chen 2024 Chin. Phys. Lett. 41 111101
Download: PDF(519KB)   PDF(mobile)(525KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We derive the discontinuities of banana integrals using the dispersion relation iteratively, and find a series of identities between the parameterized discontinuities of banana integrals (p-DOBIs). Similar to elliptic integrals, these identities enable the reduction of various p-DOBIs to be a linear combination of some fundamental ones. We present a practical application of p-DOBIs for deriving the Picard–Fuchs operator. Then we establish the expression of generalized dispersion relation, which enables us to obtain the dispersion relation representation of arbitrary banana integrals. Moreover, we propose a hypothesis for generalized dispersion relation and p-DOBIs, which provides a simple way to calculate the discontinuities and transform dispersion relation representation to p-DOBIs.
Received: 01 September 2024      Published: 25 November 2024
PACS:  11.15.Bt (General properties of perturbation theory)  
  11.55.Fv (Dispersion relations)  
  12.20.Ds (Specific calculations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/11/111101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I11/111101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xu-Liang Chen
Peng-Fei Yang
and Wei Chen
[1] Weinzierl S 2022 arXiv:2201.03593 [hep-th]
[2] Duhr C 2014 arXiv:1411.7538 [hep-ph]
[3] Bourjaily J L, He Y H, McLeod A J, Spradlin M, Vergu C, Volk M, von Hippel M, and Wilhelm M 2021 arXiv:2103.15423 [hep-th]
[4] Bourjaily J L, Broedel J, Chaubey E et al. 2022 arXiv:2203.07088 [hep-ph]
[5] Adams L and Weinzierl S 2018 arXiv:1807.01007 [hep-ph]
[6] Adams L, Chaubey E, and Weinzierl S 2018 arXiv:1807.03599 [hep-ph]
[7] Adams L, Bogner C, and Weinzierl S 2016 J. Math. Phys. 57 032304
[8] Adams L, Bogner C, and Weinzierl S 2014 J. Math. Phys. 55 102301
[9] Adams L, Bogner C, and Weinzierl S 2015 J. Math. Phys. 56 072303
[10] Adams L and Weinzierl S 2018 Phys. Lett. B 781 270
[11] Bloch S and Vanhove P 2015 J. Number Theor. 148 328
[12] Bloch S, Kerr M, and Vanhove P 2015 Compos. Math. 151 2329
[13] Bloch S, Kerr M, and Vanhove P 2017 Adv. Theor. Math. Phys. 21 1373
[14] Bönisch K, Fischbach F, Klemm A, Nega C, and Safari R 2021 J. High Energy Phys. 2021(05) 066
[15] Bönisch K, Duhr C, Fischbach F, Klemm A, and Nega C 2022 J. High Energy Phys. 2022(09) 156
[16] Bourjaily J L, McLeod A J, von Hippel M, and Wilhelm M 2019 Phys. Rev. Lett. 122 031601
[17] Broedel J, Duhr C, Dulat F, Marzucca R, Penante B, and Tancredi L 2019 J. High Energy Phys. 2019(09) 112
[18] Broedel J, Mafra C R, Matthes N, and Schlotterer O 2015 J. High Energy Phys. 2015(07) 112
[19] Broedel J, Duhr C, Dulat F, and Tancredi L 2018 Phys. Rev. D 97 116009
[20] Broedel J, Duhr C, Dulat F, Penante B, and Tancredi L 2019 J. High Energy Phys. 2019(01) 023
[21] de la Cruz L and Vanhove P 2024 arXiv:2401.09908 [hep-th]
[22] Duhr C, Klemm A, Nega C, and Tancredi L 2023 J. High Energy Phys. 2023(02) 228
[23] Forum A and von Hippel M 2023 SciPost Phys. Core 6 050
[24] Frellesvig H, Vergu C, Volk M, and von Hippel M 2021 J. High Energy Phys. 2021(05) 064
[25] Klemm A, Nega C, and Safari R 2020 J. High Energy Phys. 2020(04) 088
[26] Lairez P and Vanhove P 2023 Lett. Math. Phys. 113 37
[27] Pögel S, Wang X, and Weinzierl S 2023 J. High Energy Phys. 2023(04) 117
[28] Pögel S, Wang X, and Weinzierl S 2024 arXiv:2309.07531 [hep-th]
[29] Pögel S, Wang X, and Weinzierl S 2023 Phys. Rev. Lett. 130 101601
[30] Pögel S, Wang X, and Weinzierl S 2022 J. High Energy Phys. 2022(09) 062
[31] Primo A and Tancredi L 2017 Nucl. Phys. B 921 316
[32] Primo A and Tancredi L 2017 Nucl. Phys. B 916 94
[33] Remiddi E and Tancredi L 2016 Nucl. Phys. B 907 400
[34] Remiddi E and Tancredi L 2017 Nucl. Phys. B 925 212
[35] Vanhove P 2021 International Symposium on Symbolic and Algebraic Computation (ACM Digital Library) pp 21–26
[36] Vanhove P 2018 arXiv:1807.11466 [hep-th]
[37] Vanhove P 2014 arXiv:1401.6438 [hep-th]
[38] Groote S, Körner J G, and Pivovarov A A 2007 Ann. Phys. 322 2374
[39] Groote S, Körner J G, and Pivovarov A A 2012 Eur. Phys. J. C 72 2085
[40] Groote S and Körner J G 2019 Nucl. Phys. B 938 416
[41] Zhang H H, Feng K X, Qiu S W, Zhao A, and Li X S 2010 Chin. Phys. C 34 1576
[42] Müller-Stach S, Weinzierl S, and Zayadeh R 2014 Commun. Math. Phys. 326 237
[43] Toll J S 1956 Phys. Rev. 104 1760
[44] Bargiela P 2024 arXiv:2403.18047 [hep-th]
[45] Palameta A, Ho J, Harnett D, and Steele T G 2018 Phys. Rev. D 97 034001
[46] Boos É É and Davydychev A I 1991 Theor. Math. Phys. 89 1052
[47] Tarasov O V 1997 Nucl. Phys. B 502 455
[48] Laporta S and Remiddi E 2005 Nucl. Phys. B 704 349
Viewed
Full text


Abstract